Abstract

We present a fiber-based laser source for multiplex coherent anti-Stokes Raman scattering (CARS) microscopy. This source is very compact and potentially alignment-free. The corresponding pump and Stokes pulses for the CARS process are generated by degenerate four-wave mixing (FWM) in photonic-crystal fibers. In addition, an ytterbium-doped fiber laser emitting spectrally narrow 100 ps pulses at 1035 nm wavelength serves as pump for the FWM frequency conversion. The FWM process delivers narrow-band pulses at 648 nm and drives a continuum-like spectrum ranging from 700 to 820 nm. With the presented source vibrational resonances with energies between 1200 cm−1 and 3200 cm−1 can be accessed with a resolution of 10 cm−1. Additionally, the temporal characteristics of the FWM output have been investigated by a cross-correlation setup, revealing the suitability of the emitted pulses for CARS microscopy. This work marks a significant step towards a simple and powerful all-fiber, maintenance-free multiplex-CARS source for real-world applications outside a laboratory environment.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  2. T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
    [CrossRef] [PubMed]
  3. M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranges with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
    [CrossRef]
  4. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  5. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [CrossRef] [PubMed]
  6. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [CrossRef] [PubMed]
  7. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, 1989).
  8. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “ Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [CrossRef] [PubMed]
  9. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
    [CrossRef] [PubMed]
  10. L. Lavoute, J. C. Knight, P. Dupriez, and W. J. Wadsworth, “High power red and near-IR generation using four wave mixing in all integrated fibre laser systems,” Opt. Express 18(15), 16193–16205 (2010).
    [CrossRef] [PubMed]
  11. K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
    [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  13. M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
    [CrossRef] [PubMed]
  14. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
    [CrossRef] [PubMed]
  15. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26(17), 1356–1358 (2001).
    [CrossRef] [PubMed]
  16. J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, “80 kHz repetition rate high power fiber amplifier flat-top pulse pumped OPCPA based on BIB3O6,” Opt. Express 17(4), 2508–2517 (2009).
    [CrossRef] [PubMed]
  17. B. Ortaς, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express 15(23), 15595–15602 (2007).
    [CrossRef] [PubMed]
  18. J. Riishede, N. A. Mortensen, and J. Lægsgaard, “A ‘poor man’s approach’ to modelling micro-structured optical fibres,” J. Opt. A, Pure Appl. Opt. 5(5), 534–538 (2003).
    [CrossRef]
  19. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
    [CrossRef] [PubMed]
  20. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
    [CrossRef] [PubMed]
  21. P. J. Mosley, S. A. Bateman, L. Lavoute, and W. J. Wadsworth, “Low-noise, high-brightness, tunable source of picosecond pulsed light in the near-infrared and visible,” Opt. Express 19(25), 25337–25345 (2011).
    [CrossRef] [PubMed]
  22. A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, “Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding,” Opt. Lett. 35(17), 2885–2887 (2010).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

P. J. Mosley, S. A. Bateman, L. Lavoute, and W. J. Wadsworth, “Low-noise, high-brightness, tunable source of picosecond pulsed light in the near-infrared and visible,” Opt. Express 19(25), 25337–25345 (2011).
[CrossRef] [PubMed]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (5)

2007 (1)

2006 (1)

2004 (1)

2003 (2)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

J. Riishede, N. A. Mortensen, and J. Lægsgaard, “A ‘poor man’s approach’ to modelling micro-structured optical fibres,” J. Opt. A, Pure Appl. Opt. 5(5), 534–538 (2003).
[CrossRef]

2002 (1)

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranges with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

2001 (1)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

1986 (2)

Akimov, D.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

Bateman, S. A.

Baumgartl, M.

Bergner, N.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

Biancalana, F.

Bielecki, C.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

Birks, T.

Bonn, M.

Cerullo, G.

Chau, A. H. L.

Chemnitz, M.

Cicerone, M. T.

Coen, S.

Dietzek, B.

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
[CrossRef] [PubMed]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

Dupriez, P.

Gambetta, A.

Gordon, J. P.

Hädrich, S.

Harvey, J. D.

Holtom, G. R.

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Jauregui, C.

Joly, N.

Kalff, R.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

Kieu, K.

Knight, J.

Knight, J. C.

Krafft, C.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

Kumar, V.

Lægsgaard, J.

J. Riishede, N. A. Mortensen, and J. Lægsgaard, “A ‘poor man’s approach’ to modelling micro-structured optical fibres,” J. Opt. A, Pure Appl. Opt. 5(5), 534–538 (2003).
[CrossRef]

Lavoute, L.

Lee, Y. J.

Leonhardt, R.

Limpert, J.

Liu, Y.

Manzoni, C.

Marangoni, M.

Martin, A.

Meyer, T.

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
[CrossRef] [PubMed]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

Mitschke, F. M.

Mollenauer, L. F.

Mortensen, N. A.

J. Riishede, N. A. Mortensen, and J. Lægsgaard, “A ‘poor man’s approach’ to modelling micro-structured optical fibres,” J. Opt. A, Pure Appl. Opt. 5(5), 534–538 (2003).
[CrossRef]

Mosley, P. J.

Müller, M.

E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
[CrossRef] [PubMed]

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranges with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

Nodop, D.

Orta?, B.

Plötner, M.

Popp, J.

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
[CrossRef] [PubMed]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

Ramponi, R.

Reichart, R.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

Riishede, J.

J. Riishede, N. A. Mortensen, and J. Lægsgaard, “A ‘poor man’s approach’ to modelling micro-structured optical fibres,” J. Opt. A, Pure Appl. Opt. 5(5), 534–538 (2003).
[CrossRef]

Rinia, H. A.

Romeike, B. F. M.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

Rothhardt, J.

Russell, P.

Russell, P. St. J.

Saar, B. G.

Schimpf, D.

Schins, J. M.

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranges with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

Schreiber, T.

Steinmetz, A.

Tünnermann, A.

Vartiainen, E. M.

Wadsworth, W.

Wadsworth, W. J.

Wise, F. W.

Xie, X. S.

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

J. Biomed. Opt. (1)

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

J. Riishede, N. A. Mortensen, and J. Lægsgaard, “A ‘poor man’s approach’ to modelling micro-structured optical fibres,” J. Opt. A, Pure Appl. Opt. 5(5), 534–538 (2003).
[CrossRef]

J. Phys. Chem. B (1)

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranges with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

Opt. Express (7)

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “ Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
[CrossRef] [PubMed]

L. Lavoute, J. C. Knight, P. Dupriez, and W. J. Wadsworth, “High power red and near-IR generation using four wave mixing in all integrated fibre laser systems,” Opt. Express 18(15), 16193–16205 (2010).
[CrossRef] [PubMed]

E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
[CrossRef] [PubMed]

J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, “80 kHz repetition rate high power fiber amplifier flat-top pulse pumped OPCPA based on BIB3O6,” Opt. Express 17(4), 2508–2517 (2009).
[CrossRef] [PubMed]

B. Ortaς, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express 15(23), 15595–15602 (2007).
[CrossRef] [PubMed]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
[CrossRef] [PubMed]

P. J. Mosley, S. A. Bateman, L. Lavoute, and W. J. Wadsworth, “Low-noise, high-brightness, tunable source of picosecond pulsed light in the near-infrared and visible,” Opt. Express 19(25), 25337–25345 (2011).
[CrossRef] [PubMed]

Opt. Lett. (8)

A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, “Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding,” Opt. Lett. 35(17), 2885–2887 (2010).
[CrossRef] [PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26(17), 1356–1358 (2001).
[CrossRef] [PubMed]

M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
[CrossRef] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[CrossRef] [PubMed]

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
[CrossRef] [PubMed]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
[CrossRef] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
[CrossRef] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (2)

R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, 1989).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic setup of the fiber laser system employed to drive two four-wave-mixing processes. ISO: optical isolator, AOM: acousto-optic modulator, PM FBG: polarization-maintaining fiber bragg grating, HWP: half-wave plate, CIRC: circulator.

Fig. 2
Fig. 2

Output characteristics of the amplified ps pulses. (a) Temporal pulse shape measured with a cross-correlation setup (black) together with a Gaussian fit (red). (b) Optical spectrum at 14µJ pulse energy and 0.5MHz repetition rate (black, resolution of the optical spectrum analyzer: 0.02nm) and the output spectrum of the femtosecond oscillator (gray).

Fig. 3
Fig. 3

The spectral characteristics of the parametric gain in different LMA-PCF fibers when pumped with linear polarized 1036 nm radiation with 20 kW of peak power. The table summarizes the central FWM-signal wavelengths and, furthermore, the group velocity difference between the signal and the pump pulse while propagating in the specific fiber.

Fig. 4
Fig. 4

Conversion of the pulse energy to 648 nm in 50 cm LMA-PCF and the spectral bandwidth of the FWM-signal.

Fig. 5
Fig. 5

(a) Trace-by-trace normalized cross-correlation time traces of the pump pulses of the FWM process (at 1036nm) with increasing output energies, showing the depletion of the pump pulses. (b) Trace-by-trace normalized time traces of the degenerated FWM signal (at 648 nm) with increasing output energies, showing the evolution caused by the temporal walk-off between the driving pump pulses and the converted signal pulses.

Fig. 6
Fig. 6

SC generation based on FWM in 1m RD5 fiber as a function of input pulse energy.

Fig. 7
Fig. 7

Super continuum generation based on FWM as a function of the overall output pulse energy. HR 1036 nm: highly reflective mirror at 1036 nm, LP 650 nm: long pass filter at 650nm, SP 650 nm/SP 600 nm: short pass filter at 650 nm/600 nm, OSA: optical spectrum analyzer.

Fig. 8
Fig. 8

Measured CARS spectrum of toluene with identified resonances.

Metrics