Abstract

A two-color magneto-optical trap (MOT) for trapping cesium (Cs) atoms is experimentally realized. This two-color MOT employs the radiation forces due to photon scattering from the Cs 6P3/2 F’ = 5 - 8S1/2 F” = 4 excited-state transition, which replaced one pair of the three pairs of cooling/trapping laser beams operating on a single-photon red detuning to the Cs 6S1/2 F = 4 - 6P3/2 F’ = 5 cycling transition in a standard six-beam Cs MOT, and can cool and trap atoms on both the red-detuning and blue-detuning sides of the two-photon resonance. Employing the two-color MOT, the background-free fluorescence detection of trapped atoms has been demonstrated. This technique will be useful for observation of weak fluorescence signal radiated from single atoms in MOT.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett.59(23), 2631–2634 (1987).
    [CrossRef] [PubMed]
  2. C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett.65(13), 1571–1574 (1990).
    [CrossRef] [PubMed]
  3. J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, “Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap,” Phys. Rev. Lett.66(25), 3245–3248 (1991).
    [CrossRef] [PubMed]
  4. M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, “87Sr lattice clock with inaccuracy below 10 -15.,” Phys. Rev. Lett.98(8), 083002 (2007).
    [CrossRef] [PubMed]
  5. Z. Hu and H. J. Kimble, “Observation of a single atom in a magneto-optical trap,” Opt. Lett.19(22), 1888–1890 (1994).
    [CrossRef] [PubMed]
  6. F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett.34(9), 651–656 (1996).
    [CrossRef]
  7. D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett.34(9), 663–668 (1996).
    [CrossRef]
  8. W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys.70(3), 721–741 (1998).
    [CrossRef]
  9. S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, “Multiphoton magneto-optical trap,” Phys. Rev. Lett.103(17), 173003 (2009).
    [CrossRef] [PubMed]
  10. A. S. Tychkov, J. C. J. Koelemeij, T. Jeltes, W. Hogervorst, and W. Vassen, “Two-color magneto-optical trap for metastable helium,” Phys. Rev. A69(5), 055401 (2004).
    [CrossRef]
  11. Q. Cao, X. Y. Luo, K. Y. Gao, X. R. Wang, D. M. Chen, and R. Q. Wang, “Improved atom number with a dual color magneto-optical trap,” Chin. Phys. B21(4), 043203 (2012).
    [CrossRef]
  12. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A79(3), 033814 (2009).
    [CrossRef]
  13. F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A78(1), 013834 (2008).
    [CrossRef]
  14. D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A77(3), 033401 (2008).
    [CrossRef]
  15. H. Ohadi, M. Himsworth, A. Xuereb, and T. Freegarde, “Magneto-optical trapping and background-free imaging for atoms near nanostructured surfaces,” Opt. Express17(25), 23003–23009 (2009).
    [CrossRef] [PubMed]
  16. B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A81(4), 043803 (2010).
    [CrossRef]
  17. B. D. Yang, J. Gao, T. C. Zhang, and J. M. Wang, “Electromagnetically induced transparency without a Doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A83(1), 013818 (2011).
    [CrossRef]
  18. B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2 - 8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys.42(8), 085111 (2009).
    [CrossRef]
  19. J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys.44(13), 135102 (2011).
    [CrossRef]
  20. T. Liu, T. Geng, S. B. Yan, G. Li, J. Zhang, J. M. Wang, K. C. Peng, and T. C. Zhang, “Characterizing optical dipole trap via fluorescence of trapped cesium atoms,” Sci. China Ser. G49(3), 273–280 (2006).
    [CrossRef]
  21. W. Jing, H. Jun, Q. Ying, Y. Bao-Dong, Z. Jiang-Yan, Z. Tian-Cai, and W. Jun-Min, “Observation of single neutral atoms in a large-magnetic-gradient vapor cell magneto-optical trap,” Chin. Phys. B17(6), 2062–2065 (2008).
    [CrossRef]
  22. S. V. Kargapol’tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, “Optical cascade pumping of the 7P3/2 level in cesium atoms,” Quantum Electron.35(7), 591–597 (2005).
    [CrossRef]
  23. A. M. Akulshin, A. A. Orel, and R. J. McLean, “Collimated blue-light enhancement in velocity-selective pumped Rb vapour,” J. Phys. At. Mol. Opt. Phys.45(1), 015401 (2012).
    [CrossRef]
  24. M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity QED,” Phys. Rev. Lett.94(5), 053604 (2005).
    [CrossRef] [PubMed]
  25. K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A79(2), 021801 (2009).
    [CrossRef]
  26. V. Gomer, B. Ueberholz, S. Knappe, F. Strauch, D. Frese, and D. Meschede, “Decoding the dynamics of a single trapped atom from photon correlations,” Appl. Phys. B67(6), 689–697 (1998).
    [CrossRef]

2012

Q. Cao, X. Y. Luo, K. Y. Gao, X. R. Wang, D. M. Chen, and R. Q. Wang, “Improved atom number with a dual color magneto-optical trap,” Chin. Phys. B21(4), 043203 (2012).
[CrossRef]

A. M. Akulshin, A. A. Orel, and R. J. McLean, “Collimated blue-light enhancement in velocity-selective pumped Rb vapour,” J. Phys. At. Mol. Opt. Phys.45(1), 015401 (2012).
[CrossRef]

2011

B. D. Yang, J. Gao, T. C. Zhang, and J. M. Wang, “Electromagnetically induced transparency without a Doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A83(1), 013818 (2011).
[CrossRef]

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys.44(13), 135102 (2011).
[CrossRef]

2010

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A81(4), 043803 (2010).
[CrossRef]

2009

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2 - 8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys.42(8), 085111 (2009).
[CrossRef]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A79(3), 033814 (2009).
[CrossRef]

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, “Multiphoton magneto-optical trap,” Phys. Rev. Lett.103(17), 173003 (2009).
[CrossRef] [PubMed]

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A79(2), 021801 (2009).
[CrossRef]

H. Ohadi, M. Himsworth, A. Xuereb, and T. Freegarde, “Magneto-optical trapping and background-free imaging for atoms near nanostructured surfaces,” Opt. Express17(25), 23003–23009 (2009).
[CrossRef] [PubMed]

2008

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A78(1), 013834 (2008).
[CrossRef]

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A77(3), 033401 (2008).
[CrossRef]

W. Jing, H. Jun, Q. Ying, Y. Bao-Dong, Z. Jiang-Yan, Z. Tian-Cai, and W. Jun-Min, “Observation of single neutral atoms in a large-magnetic-gradient vapor cell magneto-optical trap,” Chin. Phys. B17(6), 2062–2065 (2008).
[CrossRef]

2007

M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, “87Sr lattice clock with inaccuracy below 10 -15.,” Phys. Rev. Lett.98(8), 083002 (2007).
[CrossRef] [PubMed]

2006

T. Liu, T. Geng, S. B. Yan, G. Li, J. Zhang, J. M. Wang, K. C. Peng, and T. C. Zhang, “Characterizing optical dipole trap via fluorescence of trapped cesium atoms,” Sci. China Ser. G49(3), 273–280 (2006).
[CrossRef]

2005

S. V. Kargapol’tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, “Optical cascade pumping of the 7P3/2 level in cesium atoms,” Quantum Electron.35(7), 591–597 (2005).
[CrossRef]

M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity QED,” Phys. Rev. Lett.94(5), 053604 (2005).
[CrossRef] [PubMed]

2004

A. S. Tychkov, J. C. J. Koelemeij, T. Jeltes, W. Hogervorst, and W. Vassen, “Two-color magneto-optical trap for metastable helium,” Phys. Rev. A69(5), 055401 (2004).
[CrossRef]

1998

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys.70(3), 721–741 (1998).
[CrossRef]

V. Gomer, B. Ueberholz, S. Knappe, F. Strauch, D. Frese, and D. Meschede, “Decoding the dynamics of a single trapped atom from photon correlations,” Appl. Phys. B67(6), 689–697 (1998).
[CrossRef]

1996

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett.34(9), 651–656 (1996).
[CrossRef]

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett.34(9), 663–668 (1996).
[CrossRef]

1994

1991

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, “Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap,” Phys. Rev. Lett.66(25), 3245–3248 (1991).
[CrossRef] [PubMed]

1990

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett.65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

1987

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett.59(23), 2631–2634 (1987).
[CrossRef] [PubMed]

Akulshin, A. M.

A. M. Akulshin, A. A. Orel, and R. J. McLean, “Collimated blue-light enhancement in velocity-selective pumped Rb vapour,” J. Phys. At. Mol. Opt. Phys.45(1), 015401 (2012).
[CrossRef]

Anderson, R.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A77(3), 033401 (2008).
[CrossRef]

Bao-Dong, Y.

W. Jing, H. Jun, Q. Ying, Y. Bao-Dong, Z. Jiang-Yan, Z. Tian-Cai, and W. Jun-Min, “Observation of single neutral atoms in a large-magnetic-gradient vapor cell magneto-optical trap,” Chin. Phys. B17(6), 2062–2065 (2008).
[CrossRef]

Becerra, F. E.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A79(3), 033814 (2009).
[CrossRef]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A78(1), 013834 (2008).
[CrossRef]

Bell, S. C.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A77(3), 033401 (2008).
[CrossRef]

Bettermann, D.

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett.34(9), 651–656 (1996).
[CrossRef]

Blatt, S.

M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, “87Sr lattice clock with inaccuracy below 10 -15.,” Phys. Rev. Lett.98(8), 083002 (2007).
[CrossRef] [PubMed]

Boyd, M. M.

M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, “87Sr lattice clock with inaccuracy below 10 -15.,” Phys. Rev. Lett.98(8), 083002 (2007).
[CrossRef] [PubMed]

Brown, R. C.

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, “Multiphoton magneto-optical trap,” Phys. Rev. Lett.103(17), 173003 (2009).
[CrossRef] [PubMed]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett.59(23), 2631–2634 (1987).
[CrossRef] [PubMed]

Cao, Q.

Q. Cao, X. Y. Luo, K. Y. Gao, X. R. Wang, D. M. Chen, and R. Q. Wang, “Improved atom number with a dual color magneto-optical trap,” Chin. Phys. B21(4), 043203 (2012).
[CrossRef]

Chen, D. M.

Q. Cao, X. Y. Luo, K. Y. Gao, X. R. Wang, D. M. Chen, and R. Q. Wang, “Improved atom number with a dual color magneto-optical trap,” Chin. Phys. B21(4), 043203 (2012).
[CrossRef]

Chen, G.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, “Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap,” Phys. Rev. Lett.66(25), 3245–3248 (1991).
[CrossRef] [PubMed]

Chu, S.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett.59(23), 2631–2634 (1987).
[CrossRef] [PubMed]

Ertmer, W.

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett.34(9), 651–656 (1996).
[CrossRef]

Foreman, S. M.

M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, “87Sr lattice clock with inaccuracy below 10 -15.,” Phys. Rev. Lett.98(8), 083002 (2007).
[CrossRef] [PubMed]

Freegarde, T.

Frese, D.

V. Gomer, B. Ueberholz, S. Knappe, F. Strauch, D. Frese, and D. Meschede, “Decoding the dynamics of a single trapped atom from photon correlations,” Appl. Phys. B67(6), 689–697 (1998).
[CrossRef]

Gao, J.

B. D. Yang, J. Gao, T. C. Zhang, and J. M. Wang, “Electromagnetically induced transparency without a Doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A83(1), 013818 (2011).
[CrossRef]

Gao, K. Y.

Q. Cao, X. Y. Luo, K. Y. Gao, X. R. Wang, D. M. Chen, and R. Q. Wang, “Improved atom number with a dual color magneto-optical trap,” Chin. Phys. B21(4), 043203 (2012).
[CrossRef]

Geng, T.

T. Liu, T. Geng, S. B. Yan, G. Li, J. Zhang, J. M. Wang, K. C. Peng, and T. C. Zhang, “Characterizing optical dipole trap via fluorescence of trapped cesium atoms,” Sci. China Ser. G49(3), 273–280 (2006).
[CrossRef]

Gomer, V.

V. Gomer, B. Ueberholz, S. Knappe, F. Strauch, D. Frese, and D. Meschede, “Decoding the dynamics of a single trapped atom from photon correlations,” Appl. Phys. B67(6), 689–697 (1998).
[CrossRef]

Hakuta, K.

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A79(2), 021801 (2009).
[CrossRef]

Haubrich, D.

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett.34(9), 663–668 (1996).
[CrossRef]

He, J.

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys.44(13), 135102 (2011).
[CrossRef]

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A81(4), 043803 (2010).
[CrossRef]

Hennrich, M.

M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity QED,” Phys. Rev. Lett.94(5), 053604 (2005).
[CrossRef] [PubMed]

Himsworth, M.

Hofmann, C. S.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A77(3), 033401 (2008).
[CrossRef]

Hogervorst, W.

A. S. Tychkov, J. C. J. Koelemeij, T. Jeltes, W. Hogervorst, and W. Vassen, “Two-color magneto-optical trap for metastable helium,” Phys. Rev. A69(5), 055401 (2004).
[CrossRef]

Hu, Z.

Z. Hu and H. J. Kimble, “Observation of a single atom in a magneto-optical trap,” Opt. Lett.19(22), 1888–1890 (1994).
[CrossRef] [PubMed]

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, “Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap,” Phys. Rev. Lett.66(25), 3245–3248 (1991).
[CrossRef] [PubMed]

Ido, T.

M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, “87Sr lattice clock with inaccuracy below 10 -15.,” Phys. Rev. Lett.98(8), 083002 (2007).
[CrossRef] [PubMed]

Jeltes, T.

A. S. Tychkov, J. C. J. Koelemeij, T. Jeltes, W. Hogervorst, and W. Vassen, “Two-color magneto-optical trap for metastable helium,” Phys. Rev. A69(5), 055401 (2004).
[CrossRef]

Jiang-Yan, Z.

W. Jing, H. Jun, Q. Ying, Y. Bao-Dong, Z. Jiang-Yan, Z. Tian-Cai, and W. Jun-Min, “Observation of single neutral atoms in a large-magnetic-gradient vapor cell magneto-optical trap,” Chin. Phys. B17(6), 2062–2065 (2008).
[CrossRef]

Jing, W.

W. Jing, H. Jun, Q. Ying, Y. Bao-Dong, Z. Jiang-Yan, Z. Tian-Cai, and W. Jun-Min, “Observation of single neutral atoms in a large-magnetic-gradient vapor cell magneto-optical trap,” Chin. Phys. B17(6), 2062–2065 (2008).
[CrossRef]

Jun, H.

W. Jing, H. Jun, Q. Ying, Y. Bao-Dong, Z. Jiang-Yan, Z. Tian-Cai, and W. Jun-Min, “Observation of single neutral atoms in a large-magnetic-gradient vapor cell magneto-optical trap,” Chin. Phys. B17(6), 2062–2065 (2008).
[CrossRef]

Jun-Min, W.

W. Jing, H. Jun, Q. Ying, Y. Bao-Dong, Z. Jiang-Yan, Z. Tian-Cai, and W. Jun-Min, “Observation of single neutral atoms in a large-magnetic-gradient vapor cell magneto-optical trap,” Chin. Phys. B17(6), 2062–2065 (2008).
[CrossRef]

Kargapol’tsev, S. V.

S. V. Kargapol’tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, “Optical cascade pumping of the 7P3/2 level in cesium atoms,” Quantum Electron.35(7), 591–597 (2005).
[CrossRef]

Kien, F. L.

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A79(2), 021801 (2009).
[CrossRef]

Kimble, H. J.

Z. Hu and H. J. Kimble, “Observation of a single atom in a magneto-optical trap,” Opt. Lett.19(22), 1888–1890 (1994).
[CrossRef] [PubMed]

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, “Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap,” Phys. Rev. Lett.66(25), 3245–3248 (1991).
[CrossRef] [PubMed]

Knappe, S.

V. Gomer, B. Ueberholz, S. Knappe, F. Strauch, D. Frese, and D. Meschede, “Decoding the dynamics of a single trapped atom from photon correlations,” Appl. Phys. B67(6), 689–697 (1998).
[CrossRef]

Koelemeij, J. C. J.

A. S. Tychkov, J. C. J. Koelemeij, T. Jeltes, W. Hogervorst, and W. Vassen, “Two-color magneto-optical trap for metastable helium,” Phys. Rev. A69(5), 055401 (2004).
[CrossRef]

Kuhn, A.

M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity QED,” Phys. Rev. Lett.94(5), 053604 (2005).
[CrossRef] [PubMed]

Lee, R. B.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, “Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap,” Phys. Rev. Lett.66(25), 3245–3248 (1991).
[CrossRef] [PubMed]

Li, G.

T. Liu, T. Geng, S. B. Yan, G. Li, J. Zhang, J. M. Wang, K. C. Peng, and T. C. Zhang, “Characterizing optical dipole trap via fluorescence of trapped cesium atoms,” Sci. China Ser. G49(3), 273–280 (2006).
[CrossRef]

Liang, Q. B.

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A81(4), 043803 (2010).
[CrossRef]

Liu, T.

T. Liu, T. Geng, S. B. Yan, G. Li, J. Zhang, J. M. Wang, K. C. Peng, and T. C. Zhang, “Characterizing optical dipole trap via fluorescence of trapped cesium atoms,” Sci. China Ser. G49(3), 273–280 (2006).
[CrossRef]

Ludlow, A. D.

M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, “87Sr lattice clock with inaccuracy below 10 -15.,” Phys. Rev. Lett.98(8), 083002 (2007).
[CrossRef] [PubMed]

Luo, X. Y.

Q. Cao, X. Y. Luo, K. Y. Gao, X. R. Wang, D. M. Chen, and R. Q. Wang, “Improved atom number with a dual color magneto-optical trap,” Chin. Phys. B21(4), 043203 (2012).
[CrossRef]

McLean, R. J.

A. M. Akulshin, A. A. Orel, and R. J. McLean, “Collimated blue-light enhancement in velocity-selective pumped Rb vapour,” J. Phys. At. Mol. Opt. Phys.45(1), 015401 (2012).
[CrossRef]

Meschede, D.

V. Gomer, B. Ueberholz, S. Knappe, F. Strauch, D. Frese, and D. Meschede, “Decoding the dynamics of a single trapped atom from photon correlations,” Appl. Phys. B67(6), 689–697 (1998).
[CrossRef]

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett.34(9), 663–668 (1996).
[CrossRef]

Monroe, C.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett.65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Morinaga, M.

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A79(2), 021801 (2009).
[CrossRef]

Nayak, K. P.

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A79(2), 021801 (2009).
[CrossRef]

Ohadi, H.

Orel, A. A.

A. M. Akulshin, A. A. Orel, and R. J. McLean, “Collimated blue-light enhancement in velocity-selective pumped Rb vapour,” J. Phys. At. Mol. Opt. Phys.45(1), 015401 (2012).
[CrossRef]

Orozco, L. A.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A79(3), 033814 (2009).
[CrossRef]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A78(1), 013834 (2008).
[CrossRef]

Peng, J. L.

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett.34(9), 651–656 (1996).
[CrossRef]

Peng, K. C.

T. Liu, T. Geng, S. B. Yan, G. Li, J. Zhang, J. M. Wang, K. C. Peng, and T. C. Zhang, “Characterizing optical dipole trap via fluorescence of trapped cesium atoms,” Sci. China Ser. G49(3), 273–280 (2006).
[CrossRef]

Phillips, W. D.

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, “Multiphoton magneto-optical trap,” Phys. Rev. Lett.103(17), 173003 (2009).
[CrossRef] [PubMed]

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys.70(3), 721–741 (1998).
[CrossRef]

Plisson, T.

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, “Multiphoton magneto-optical trap,” Phys. Rev. Lett.103(17), 173003 (2009).
[CrossRef] [PubMed]

Porto, J. V.

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, “Multiphoton magneto-optical trap,” Phys. Rev. Lett.103(17), 173003 (2009).
[CrossRef] [PubMed]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett.59(23), 2631–2634 (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett.59(23), 2631–2634 (1987).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett.59(23), 2631–2634 (1987).
[CrossRef] [PubMed]

Rempe, G.

M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity QED,” Phys. Rev. Lett.94(5), 053604 (2005).
[CrossRef] [PubMed]

Robinson, H.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett.65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Rolston, S. L.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A79(3), 033814 (2009).
[CrossRef]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A78(1), 013834 (2008).
[CrossRef]

Ruschewitz, F.

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett.34(9), 651–656 (1996).
[CrossRef]

Schadwinkel, H.

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett.34(9), 663–668 (1996).
[CrossRef]

Scholten, R. E.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A77(3), 033401 (2008).
[CrossRef]

Sheludko, D. V.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A77(3), 033401 (2008).
[CrossRef]

Strauch, F.

V. Gomer, B. Ueberholz, S. Knappe, F. Strauch, D. Frese, and D. Meschede, “Decoding the dynamics of a single trapped atom from photon correlations,” Appl. Phys. B67(6), 689–697 (1998).
[CrossRef]

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett.34(9), 663–668 (1996).
[CrossRef]

Swann, W.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett.65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Tabosa, J. W. R.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, “Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap,” Phys. Rev. Lett.66(25), 3245–3248 (1991).
[CrossRef] [PubMed]

Taichenachev, A. V.

S. V. Kargapol’tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, “Optical cascade pumping of the 7P3/2 level in cesium atoms,” Quantum Electron.35(7), 591–597 (2005).
[CrossRef]

Tian-Cai, Z.

W. Jing, H. Jun, Q. Ying, Y. Bao-Dong, Z. Jiang-Yan, Z. Tian-Cai, and W. Jun-Min, “Observation of single neutral atoms in a large-magnetic-gradient vapor cell magneto-optical trap,” Chin. Phys. B17(6), 2062–2065 (2008).
[CrossRef]

Tychkov, A. S.

A. S. Tychkov, J. C. J. Koelemeij, T. Jeltes, W. Hogervorst, and W. Vassen, “Two-color magneto-optical trap for metastable helium,” Phys. Rev. A69(5), 055401 (2004).
[CrossRef]

Ueberholz, B.

V. Gomer, B. Ueberholz, S. Knappe, F. Strauch, D. Frese, and D. Meschede, “Decoding the dynamics of a single trapped atom from photon correlations,” Appl. Phys. B67(6), 689–697 (1998).
[CrossRef]

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett.34(9), 663–668 (1996).
[CrossRef]

Vassen, W.

A. S. Tychkov, J. C. J. Koelemeij, T. Jeltes, W. Hogervorst, and W. Vassen, “Two-color magneto-optical trap for metastable helium,” Phys. Rev. A69(5), 055401 (2004).
[CrossRef]

Velichansky, V. L.

S. V. Kargapol’tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, “Optical cascade pumping of the 7P3/2 level in cesium atoms,” Quantum Electron.35(7), 591–597 (2005).
[CrossRef]

Vredenbregt, E. J. D.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A77(3), 033401 (2008).
[CrossRef]

Wang, J. M.

B. D. Yang, J. Gao, T. C. Zhang, and J. M. Wang, “Electromagnetically induced transparency without a Doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A83(1), 013818 (2011).
[CrossRef]

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys.44(13), 135102 (2011).
[CrossRef]

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A81(4), 043803 (2010).
[CrossRef]

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2 - 8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys.42(8), 085111 (2009).
[CrossRef]

T. Liu, T. Geng, S. B. Yan, G. Li, J. Zhang, J. M. Wang, K. C. Peng, and T. C. Zhang, “Characterizing optical dipole trap via fluorescence of trapped cesium atoms,” Sci. China Ser. G49(3), 273–280 (2006).
[CrossRef]

Wang, R. Q.

Q. Cao, X. Y. Luo, K. Y. Gao, X. R. Wang, D. M. Chen, and R. Q. Wang, “Improved atom number with a dual color magneto-optical trap,” Chin. Phys. B21(4), 043203 (2012).
[CrossRef]

Wang, X. R.

Q. Cao, X. Y. Luo, K. Y. Gao, X. R. Wang, D. M. Chen, and R. Q. Wang, “Improved atom number with a dual color magneto-optical trap,” Chin. Phys. B21(4), 043203 (2012).
[CrossRef]

Wieman, C.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett.65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Willis, R. T.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A79(3), 033814 (2009).
[CrossRef]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A78(1), 013834 (2008).
[CrossRef]

Wu, S.

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, “Multiphoton magneto-optical trap,” Phys. Rev. Lett.103(17), 173003 (2009).
[CrossRef] [PubMed]

Wynands, R.

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett.34(9), 663–668 (1996).
[CrossRef]

Xuereb, A.

Yan, S. B.

T. Liu, T. Geng, S. B. Yan, G. Li, J. Zhang, J. M. Wang, K. C. Peng, and T. C. Zhang, “Characterizing optical dipole trap via fluorescence of trapped cesium atoms,” Sci. China Ser. G49(3), 273–280 (2006).
[CrossRef]

Yang, B. D.

B. D. Yang, J. Gao, T. C. Zhang, and J. M. Wang, “Electromagnetically induced transparency without a Doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A83(1), 013818 (2011).
[CrossRef]

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys.44(13), 135102 (2011).
[CrossRef]

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A81(4), 043803 (2010).
[CrossRef]

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2 - 8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys.42(8), 085111 (2009).
[CrossRef]

Yarovitsky, A. V.

S. V. Kargapol’tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, “Optical cascade pumping of the 7P3/2 level in cesium atoms,” Quantum Electron.35(7), 591–597 (2005).
[CrossRef]

Ye, J.

M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, “87Sr lattice clock with inaccuracy below 10 -15.,” Phys. Rev. Lett.98(8), 083002 (2007).
[CrossRef] [PubMed]

Ying, Q.

W. Jing, H. Jun, Q. Ying, Y. Bao-Dong, Z. Jiang-Yan, Z. Tian-Cai, and W. Jun-Min, “Observation of single neutral atoms in a large-magnetic-gradient vapor cell magneto-optical trap,” Chin. Phys. B17(6), 2062–2065 (2008).
[CrossRef]

Yudin, V. I.

S. V. Kargapol’tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, “Optical cascade pumping of the 7P3/2 level in cesium atoms,” Quantum Electron.35(7), 591–597 (2005).
[CrossRef]

Zelevinsky, T.

M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, “87Sr lattice clock with inaccuracy below 10 -15.,” Phys. Rev. Lett.98(8), 083002 (2007).
[CrossRef] [PubMed]

Zhang, J.

T. Liu, T. Geng, S. B. Yan, G. Li, J. Zhang, J. M. Wang, K. C. Peng, and T. C. Zhang, “Characterizing optical dipole trap via fluorescence of trapped cesium atoms,” Sci. China Ser. G49(3), 273–280 (2006).
[CrossRef]

Zhang, T. C.

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys.44(13), 135102 (2011).
[CrossRef]

B. D. Yang, J. Gao, T. C. Zhang, and J. M. Wang, “Electromagnetically induced transparency without a Doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A83(1), 013818 (2011).
[CrossRef]

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A81(4), 043803 (2010).
[CrossRef]

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2 - 8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys.42(8), 085111 (2009).
[CrossRef]

T. Liu, T. Geng, S. B. Yan, G. Li, J. Zhang, J. M. Wang, K. C. Peng, and T. C. Zhang, “Characterizing optical dipole trap via fluorescence of trapped cesium atoms,” Sci. China Ser. G49(3), 273–280 (2006).
[CrossRef]

Zhao, J. Y.

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2 - 8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys.42(8), 085111 (2009).
[CrossRef]

Appl. Phys. B

V. Gomer, B. Ueberholz, S. Knappe, F. Strauch, D. Frese, and D. Meschede, “Decoding the dynamics of a single trapped atom from photon correlations,” Appl. Phys. B67(6), 689–697 (1998).
[CrossRef]

Chin. Phys. B

W. Jing, H. Jun, Q. Ying, Y. Bao-Dong, Z. Jiang-Yan, Z. Tian-Cai, and W. Jun-Min, “Observation of single neutral atoms in a large-magnetic-gradient vapor cell magneto-optical trap,” Chin. Phys. B17(6), 2062–2065 (2008).
[CrossRef]

Q. Cao, X. Y. Luo, K. Y. Gao, X. R. Wang, D. M. Chen, and R. Q. Wang, “Improved atom number with a dual color magneto-optical trap,” Chin. Phys. B21(4), 043203 (2012).
[CrossRef]

Europhys. Lett.

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett.34(9), 651–656 (1996).
[CrossRef]

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett.34(9), 663–668 (1996).
[CrossRef]

J. Phys. At. Mol. Opt. Phys.

A. M. Akulshin, A. A. Orel, and R. J. McLean, “Collimated blue-light enhancement in velocity-selective pumped Rb vapour,” J. Phys. At. Mol. Opt. Phys.45(1), 015401 (2012).
[CrossRef]

J. Phys. D Appl. Phys.

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2 - 8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys.42(8), 085111 (2009).
[CrossRef]

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys.44(13), 135102 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A79(2), 021801 (2009).
[CrossRef]

A. S. Tychkov, J. C. J. Koelemeij, T. Jeltes, W. Hogervorst, and W. Vassen, “Two-color magneto-optical trap for metastable helium,” Phys. Rev. A69(5), 055401 (2004).
[CrossRef]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A79(3), 033814 (2009).
[CrossRef]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A78(1), 013834 (2008).
[CrossRef]

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A77(3), 033401 (2008).
[CrossRef]

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A81(4), 043803 (2010).
[CrossRef]

B. D. Yang, J. Gao, T. C. Zhang, and J. M. Wang, “Electromagnetically induced transparency without a Doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A83(1), 013818 (2011).
[CrossRef]

Phys. Rev. Lett.

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, “Multiphoton magneto-optical trap,” Phys. Rev. Lett.103(17), 173003 (2009).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett.59(23), 2631–2634 (1987).
[CrossRef] [PubMed]

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett.65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, “Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap,” Phys. Rev. Lett.66(25), 3245–3248 (1991).
[CrossRef] [PubMed]

M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, “87Sr lattice clock with inaccuracy below 10 -15.,” Phys. Rev. Lett.98(8), 083002 (2007).
[CrossRef] [PubMed]

M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity QED,” Phys. Rev. Lett.94(5), 053604 (2005).
[CrossRef] [PubMed]

Quantum Electron.

S. V. Kargapol’tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, “Optical cascade pumping of the 7P3/2 level in cesium atoms,” Quantum Electron.35(7), 591–597 (2005).
[CrossRef]

Rev. Mod. Phys.

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys.70(3), 721–741 (1998).
[CrossRef]

Sci. China Ser. G

T. Liu, T. Geng, S. B. Yan, G. Li, J. Zhang, J. M. Wang, K. C. Peng, and T. C. Zhang, “Characterizing optical dipole trap via fluorescence of trapped cesium atoms,” Sci. China Ser. G49(3), 273–280 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Two-color MOT configuration. (b) Relevant energy levels of Cs atoms. Keys to figure: σ +: σ + circular polarization; σ -: σ - circular polarization; I: the current of the anti-Helmholtz coils.

Fig. 2
Fig. 2

Our laser system for the two-color Cs MOT. Keys to figure: ECDL: extended-cavity diode laser; SAS: saturated-absorption spectroscopy; PS: polarization spectroscopy; AOM: acousto-optical modulator; Lock-in: lock-in amplifier; P-I: proportion and integration amplifier; SIN: sine-wave signal generator; DF, dichroic filter; M: mirror. PBS: polarization beam splitting cube; λ/2: half-wave plate; PD: photodiode.

Fig. 3
Fig. 3

Peak fluorescence of two-color MOT vs the two-photon frequency detuning δ2. The solid lines are only for guiding eyes, and the dashed line indicates background of the fluorescence signal. Typical MOT parameters: 852.3-nm cooling and trapping laser beams: ~4 x 19.9 mW/cm2; 852.3-nm repumping laser beams: ~4 x 10.2 mW/cm2; gradient of quadrupole magnetic field: ~10 Gauss/cm. The inset shows typical fluorescence image of the cold cloud in our two-color Cs MOT and the intensity distributions along horizontal and vertical directions.

Fig. 4
Fig. 4

Peak fluorescence of the two-color Cs MOT vs the total intensity of the repumping laser beams. The solid line is only for guiding eyes.

Fig. 5
Fig. 5

Typical background-free 894-nm fluorescence photon counting signal of cold atoms in the two-color MOT using APD with help of the 894-nm IF plate. The two-color MOT parameters: the cooling/trapping laser beams along ± x for 852.3 nm: ~2 x 31.6 mW/cm2; ± y for 794.6 nm: ~2 x 226.4 mW/cm2; ± z for 852.3 nm: ~2 x 63.2 mW/cm2; the repumping laser beams along ± z for 852.3 nm: ~2 x 89.5 mW/cm2; typical gradient of the quadruple magnetic filed: ~28 Gauss/cm. (a) ~(d) indicate the background 894-nm photon counting levels for the cases of turning off MOT magnetic field (a), blocking the laser beams along ± x directions (b), blocking the laser beams along ± y directions (c), and blocking the laser beams along ± z directions (d), respectively. For detecting 894-nm photons radiated from cold atoms in the two-color Cs MOT, clearly the background 894-nm photon counting levels are almost kept at the same level (dominated by the dark counts of the APD), which is nearly not disturbed by the scattering photons from the 852-nm and 795-nm cooling/trapping laser beams and the 852-nm repumping laser beams.

Fig. 6
Fig. 6

Typical 852-nm fluorescence photon counting signal of cold atoms in the two-color MOT using APD with help of the 852-nm IF plate. The two-color MOT parameters: the cooling/trapping laser beams along ± x for 852.3 nm: ~2 x 31.6 mW/cm2; ± y for 794.6 nm: ~2 x 226.4 mW/cm2; ± z for 852.3 nm: ~2 x 63.2 mW/cm2; the repumping laser beams along ± z for 852.3 nm: ~2 x 89.5 mW/cm2; typical gradient of the quadruple magnetic filed: ~28 Gauss/cm. (a) ~(d) indicate the background 852-nm photon counting levels for the cases of turning off MOT magnetic field (a), blocking the laser beams along ± x directions (b), blocking the laser beams along ± y directions (c), and blocking the laser beams along ± z directions (d), respectively. For detecting 852-nm photons radiated from cold atoms in the two-color Cs MOT, the background photon counting levels are severely disturbed by the scattering photons from the 852-nm cooling/trapping and the repumping laser beams.

Metrics