Abstract

We acquired images of breast malignancies using the Twente photoacoustic mammoscope (PAM), to obtain more information about the clinical feasibility and limitations of photoacoustic mammography. Results were compared with conventional imaging and histopathology. Ten technically acceptable measurements on patients with malignancies and two measurements on patients with cysts were performed. In the reconstructed volumes of all ten malignant lesions, a confined region with high contrast with respect to the background could be seen. In all malignant cases, the PA contrast of the abnormality was higher than the contrast on x-ray mammography. The PA contrast appeared to be independent of the mammographically estimated breast density and was absent in the case of cysts. Technological improvements to the instrument and further studies on less suspicious lesions are planned to further investigate the potential of PAM.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Tirona, R. Sehgal, and O. Ballester, “Prevention of breast cancer (part I): epidemiology, risk factors, and risk assessment tools,” Cancer Invest. 28(7), 743–750 (2010).
    [CrossRef] [PubMed]
  2. W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233(3), 830–849 (2004).
    [CrossRef] [PubMed]
  3. G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer 3(6), 401–410 (2003).
    [CrossRef] [PubMed]
  4. D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
    [CrossRef] [PubMed]
  5. M. Heijblom, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Imaging tumor vascularization for detection and diagnosis of breast cancer,” Technol. Cancer Res. Treat. 10(6), 607–623 (2011).
    [PubMed]
  6. T. Uematsu, S. Yuen, M. Kasami, and Y. Uchida, “Comparison of magnetic resonance imaging, multidetector row computed tomography, ultrasonography, and mammography for tumor extension of breast cancer,” Breast Cancer Res. Treat. 112(3), 461–474 (2008).
    [CrossRef] [PubMed]
  7. S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
    [CrossRef] [PubMed]
  8. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Trans. R. Soc. London, Ser. A 367, 3055–3072 (2009).
  9. B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
    [CrossRef] [PubMed]
  10. Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
    [CrossRef] [PubMed]
  11. Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
    [CrossRef] [PubMed]
  12. B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
    [CrossRef]
  13. Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
    [CrossRef] [PubMed]
  14. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [CrossRef]
  15. S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29(5), 213–221 (2011).
    [CrossRef] [PubMed]
  16. Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
    [CrossRef] [PubMed]
  17. J. Yao and L. V. Wang, “Photoacoustic tomography: fundamentals, advances and prospects,” Contrast Media Mol. Imaging 6(5), 332–345 (2011).
    [CrossRef] [PubMed]
  18. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
    [CrossRef] [PubMed]
  19. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
    [CrossRef] [PubMed]
  20. T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
    [CrossRef] [PubMed]
  21. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
    [CrossRef] [PubMed]
  22. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
    [CrossRef] [PubMed]
  23. M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35(6), 2218–2223 (2008).
    [CrossRef] [PubMed]
  24. J. Jose, S. Manohar, R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J. Biophotonics 2(12), 701–717 (2009).
    [CrossRef] [PubMed]
  25. R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
    [CrossRef] [PubMed]
  26. Z. Xie, X. Wang, R. F. Morris, F. R. Padilla, G. L. Lecarpentier, and P. L. Carson, “Photoacoustic imaging for deep targets in the breast using a multichannel 2D array transducer,” in Photonics West - Photons Plus Ultrasound: Imaging and Sensing 2011, A. Oraevsky, and L. Wang, eds. (SPIE, San-Francisco, 2011), 789907–789901: 789007–789906.
  27. S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
    [CrossRef] [PubMed]
  28. D. Piras, W. Xia, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
    [CrossRef]
  29. “The ACR breast imaging reporting and data system (BIRADS),” (American College of Radiology 2003), www.acr.org (2011).
  30. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
    [CrossRef] [PubMed]
  31. T. D. Khokhlova, I. M. Pelivanov, and A. A. Karabutov, “Optoacoustic tomography utilizing focused transducers: the resolution study,” Appl. Phys. Lett. 92(2), 024105 (2008).
    [CrossRef]
  32. Y. Xu and L. V. Wang, “Effects of acoustic heterogeneity in breast thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1134–1146 (2003).
    [CrossRef] [PubMed]
  33. C. Kuhl, “The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice,” Radiology 244(2), 356–378 (2007).
    [CrossRef] [PubMed]
  34. E. P. Friedman, M. A. Hall-Craggs, H. Mumtaz, and A. Schneidau, “Breast MR and the appearance of the normal and abnormal nipple,” Clin. Radiol. 52(11), 854–861 (1997).
    [CrossRef] [PubMed]
  35. O. Sarica, E. Zeybek, and E. Ozturk, “Evaluation of nipple-areola complex with ultrasonography and magnetic resonance imaging,” J. Comput. Assist. Tomogr. 34(4), 575–586 (2010).
    [CrossRef] [PubMed]
  36. P. V. van Deventer, “The blood supply to the nipple-areola complex of the human mammary gland,” Aesthetic Plast. Surg. 28(6), 393–398 (2004).
    [CrossRef] [PubMed]
  37. S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
    [CrossRef] [PubMed]
  38. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
    [CrossRef] [PubMed]
  39. H. E. Daldrup-Link, G. H. Simon, and R. C. Brasch, “Imaging of tumor angiogenesis: current approaches and future prospects,” Curr. Pharm. Des. 12(21), 2661–2672 (2006).
    [CrossRef] [PubMed]
  40. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
    [CrossRef] [PubMed]
  41. J. Holash, S. J. Wiegand, and G. D. Yancopoulos, “New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF,” Oncogene 18(38), 5356–5362 (1999).
    [CrossRef] [PubMed]
  42. P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
    [CrossRef] [PubMed]
  43. R. L. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
    [CrossRef] [PubMed]
  44. S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).
    [CrossRef] [PubMed]
  45. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
    [CrossRef] [PubMed]
  46. R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
    [CrossRef] [PubMed]
  47. J. Wang, P. L. Torng, T. P. Liu, K. L. Chen, and T. T. Shih, “Proton MR spectroscopy in normal breasts between pre- and postmenopausal women: a preliminary study,” AJR Am. J. Roentgenol. 190(2), 505–510 (2008).
    [CrossRef] [PubMed]
  48. A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38(3), 1694–1704 (2011).
    [CrossRef] [PubMed]
  49. Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
    [CrossRef] [PubMed]
  50. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45(8), 1866–1875 (2006).
    [CrossRef] [PubMed]
  51. Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
    [CrossRef]
  52. N. R. Jagannathan, “Breast tissue characterization by in vivo Magnetic Resonance Spectroscopy,” Spectroscopy 25, 251–260 (2011).
  53. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
    [CrossRef] [PubMed]
  54. V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
    [CrossRef] [PubMed]

2012

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).
[CrossRef] [PubMed]

2011

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38(3), 1694–1704 (2011).
[CrossRef] [PubMed]

N. R. Jagannathan, “Breast tissue characterization by in vivo Magnetic Resonance Spectroscopy,” Spectroscopy 25, 251–260 (2011).

M. Heijblom, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Imaging tumor vascularization for detection and diagnosis of breast cancer,” Technol. Cancer Res. Treat. 10(6), 607–623 (2011).
[PubMed]

Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[CrossRef] [PubMed]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[CrossRef]

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29(5), 213–221 (2011).
[CrossRef] [PubMed]

J. Yao and L. V. Wang, “Photoacoustic tomography: fundamentals, advances and prospects,” Contrast Media Mol. Imaging 6(5), 332–345 (2011).
[CrossRef] [PubMed]

2010

M. T. Tirona, R. Sehgal, and O. Ballester, “Prevention of breast cancer (part I): epidemiology, risk factors, and risk assessment tools,” Cancer Invest. 28(7), 743–750 (2010).
[CrossRef] [PubMed]

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[CrossRef]

O. Sarica, E. Zeybek, and E. Ozturk, “Evaluation of nipple-areola complex with ultrasonography and magnetic resonance imaging,” J. Comput. Assist. Tomogr. 34(4), 575–586 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[CrossRef] [PubMed]

2009

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[CrossRef] [PubMed]

J. Jose, S. Manohar, R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J. Biophotonics 2(12), 701–717 (2009).
[CrossRef] [PubMed]

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Trans. R. Soc. London, Ser. A 367, 3055–3072 (2009).

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

2008

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

T. Uematsu, S. Yuen, M. Kasami, and Y. Uchida, “Comparison of magnetic resonance imaging, multidetector row computed tomography, ultrasonography, and mammography for tumor extension of breast cancer,” Breast Cancer Res. Treat. 112(3), 461–474 (2008).
[CrossRef] [PubMed]

T. D. Khokhlova, I. M. Pelivanov, and A. A. Karabutov, “Optoacoustic tomography utilizing focused transducers: the resolution study,” Appl. Phys. Lett. 92(2), 024105 (2008).
[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35(6), 2218–2223 (2008).
[CrossRef] [PubMed]

J. Wang, P. L. Torng, T. P. Liu, K. L. Chen, and T. T. Shih, “Proton MR spectroscopy in normal breasts between pre- and postmenopausal women: a preliminary study,” AJR Am. J. Roentgenol. 190(2), 505–510 (2008).
[CrossRef] [PubMed]

2007

2006

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45(8), 1866–1875 (2006).
[CrossRef] [PubMed]

Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

H. E. Daldrup-Link, G. H. Simon, and R. C. Brasch, “Imaging of tumor angiogenesis: current approaches and future prospects,” Curr. Pharm. Des. 12(21), 2661–2672 (2006).
[CrossRef] [PubMed]

2005

R. L. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[CrossRef] [PubMed]

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
[CrossRef] [PubMed]

2004

P. V. van Deventer, “The blood supply to the nipple-areola complex of the human mammary gland,” Aesthetic Plast. Surg. 28(6), 393–398 (2004).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233(3), 830–849 (2004).
[CrossRef] [PubMed]

2003

G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer 3(6), 401–410 (2003).
[CrossRef] [PubMed]

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[CrossRef] [PubMed]

Y. Xu and L. V. Wang, “Effects of acoustic heterogeneity in breast thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1134–1146 (2003).
[CrossRef] [PubMed]

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

2002

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
[CrossRef] [PubMed]

1999

J. Holash, S. J. Wiegand, and G. D. Yancopoulos, “New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF,” Oncogene 18(38), 5356–5362 (1999).
[CrossRef] [PubMed]

1997

E. P. Friedman, M. A. Hall-Craggs, H. Mumtaz, and A. Schneidau, “Breast MR and the appearance of the normal and abnormal nipple,” Clin. Radiol. 52(11), 854–861 (1997).
[CrossRef] [PubMed]

Abbate, F.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

Aguirre, A.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

Apruzzese, A.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Ardeshirpour, Y.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

Arridge, S. R.

Bakker, L.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Balestreri, N.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

Ballester, O.

M. T. Tirona, R. Sehgal, and O. Ballester, “Prevention of breast cancer (part I): epidemiology, risk factors, and risk assessment tools,” Cancer Invest. 28(7), 743–750 (2010).
[CrossRef] [PubMed]

Bassetti, E.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Bassi, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[CrossRef] [PubMed]

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[CrossRef]

Beard, P. C.

Benjamin, L. E.

G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer 3(6), 401–410 (2003).
[CrossRef] [PubMed]

Berg, W. A.

W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233(3), 830–849 (2004).
[CrossRef] [PubMed]

Berger, A. J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

Bergers, G.

G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer 3(6), 401–410 (2003).
[CrossRef] [PubMed]

Bevilacqua, F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

Bhargavan, M.

W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233(3), 830–849 (2004).
[CrossRef] [PubMed]

Boas, D. A.

Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[CrossRef] [PubMed]

Bontus, C.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Boverman, G.

Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[CrossRef] [PubMed]

Brancato, B.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Brasch, R. C.

H. E. Daldrup-Link, G. H. Simon, and R. C. Brasch, “Imaging of tumor angiogenesis: current approaches and future prospects,” Curr. Pharm. Des. 12(21), 2661–2672 (2006).
[CrossRef] [PubMed]

Brendel, B.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Brooks, D. H.

Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[CrossRef] [PubMed]

Brooksby, B. A.

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

Buehler, A.

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38(3), 1694–1704 (2011).
[CrossRef] [PubMed]

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

Carozzi, F.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Carp, S. A.

Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[CrossRef] [PubMed]

Carter, W. B.

W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233(3), 830–849 (2004).
[CrossRef] [PubMed]

Cassano, E.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

Catarzi, S.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Cerussi, A. E.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

Chen, K. L.

J. Wang, P. L. Torng, T. P. Liu, K. L. Chen, and T. T. Shih, “Proton MR spectroscopy in normal breasts between pre- and postmenopausal women: a preliminary study,” AJR Am. J. Roentgenol. 190(2), 505–510 (2008).
[CrossRef] [PubMed]

Chen, N. G.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
[CrossRef] [PubMed]

Chikoidze, E.

R. L. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[CrossRef] [PubMed]

Choyke, P. L.

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[CrossRef] [PubMed]

Ciatto, S.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Comelli, D.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[CrossRef] [PubMed]

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Cox, B. T.

Cronin, E. B.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

Cubeddu, R.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[CrossRef] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[CrossRef] [PubMed]

R. L. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[CrossRef] [PubMed]

Daldrup-Link, H. E.

H. E. Daldrup-Link, G. H. Simon, and R. C. Brasch, “Imaging of tumor angiogenesis: current approaches and future prospects,” Curr. Pharm. Des. 12(21), 2661–2672 (2006).
[CrossRef] [PubMed]

Deckers, P. J.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

Dehghani, H.

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Trans. R. Soc. London, Ser. A 367, 3055–3072 (2009).

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

Del Rio, S. P.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Dima, A.

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38(3), 1694–1704 (2011).
[CrossRef] [PubMed]

Doyle, R. P.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Elias, S. G.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Emelianov, S.

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29(5), 213–221 (2011).
[CrossRef] [PubMed]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Evers, D. J.

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

Fang, Q. Q.

Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).
[CrossRef] [PubMed]

Farina, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[CrossRef] [PubMed]

Feng, D. Z.

Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
[CrossRef] [PubMed]

Friedman, E. P.

E. P. Friedman, M. A. Hall-Craggs, H. Mumtaz, and A. Schneidau, “Breast MR and the appearance of the normal and abnormal nipple,” Clin. Radiol. 52(11), 854–861 (1997).
[CrossRef] [PubMed]

Gibson, A.

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Trans. R. Soc. London, Ser. A 367, 3055–3072 (2009).

Gutierrez, L.

W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233(3), 830–849 (2004).
[CrossRef] [PubMed]

Hall-Craggs, M. A.

E. P. Friedman, M. A. Hall-Craggs, H. Mumtaz, and A. Schneidau, “Breast MR and the appearance of the normal and abnormal nipple,” Clin. Radiol. 52(11), 854–861 (1997).
[CrossRef] [PubMed]

Harbers, R.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Hegde, P.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
[CrossRef] [PubMed]

Hegde, P. U.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

Heijblom, M.

M. Heijblom, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Imaging tumor vascularization for detection and diagnosis of breast cancer,” Technol. Cancer Res. Treat. 10(6), 607–623 (2011).
[PubMed]

Hendriks, B. H. W.

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

Holash, J.

J. Holash, S. J. Wiegand, and G. D. Yancopoulos, “New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF,” Oncogene 18(38), 5356–5362 (1999).
[CrossRef] [PubMed]

Holcombe, R. F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

Houssami, N.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

Huang, M.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
[CrossRef] [PubMed]

Ioffe, O. B.

W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233(3), 830–849 (2004).
[CrossRef] [PubMed]

Jagannathan, N. R.

N. R. Jagannathan, “Breast tissue characterization by in vivo Magnetic Resonance Spectroscopy,” Spectroscopy 25, 251–260 (2011).

Jagjivan, B.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
[CrossRef] [PubMed]

Jakubowski, D.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

Jetzfellner, T.

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38(3), 1694–1704 (2011).
[CrossRef] [PubMed]

Jiang, H. B.

Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

Jiang, S. D.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

Jose, J.

J. Jose, S. Manohar, R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J. Biophotonics 2(12), 701–717 (2009).
[CrossRef] [PubMed]

Kane, M.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
[CrossRef] [PubMed]

Karabutov, A. A.

Kasami, M.

T. Uematsu, S. Yuen, M. Kasami, and Y. Uchida, “Comparison of magnetic resonance imaging, multidetector row computed tomography, ultrasonography, and mammography for tumor extension of breast cancer,” Breast Cancer Res. Treat. 112(3), 461–474 (2008).
[CrossRef] [PubMed]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Kharine, A.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

Khokhlova, T. D.

Klaase, J. M.

M. Heijblom, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Imaging tumor vascularization for detection and diagnosis of breast cancer,” Technol. Cancer Res. Treat. 10(6), 607–623 (2011).
[PubMed]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
[CrossRef] [PubMed]

Kogel, C.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

Kolkman, R. G.

J. Jose, S. Manohar, R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J. Biophotonics 2(12), 701–717 (2009).
[CrossRef] [PubMed]

Kopans, D. B.

Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[CrossRef] [PubMed]

Köstli, K. P.

Kozhushko, V. V.

Kruger, R. A.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Ku, G.

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35(6), 2218–2223 (2008).
[CrossRef] [PubMed]

Kuhl, C.

C. Kuhl, “The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice,” Radiology 244(2), 356–378 (2007).
[CrossRef] [PubMed]

Kurtzma, S. H.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
[CrossRef] [PubMed]

Kurtzman, S. H.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Lam, R. B.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Lamberini, M. P.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Lanning, R.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

Lao, Y. Q.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Lewis, R. S.

W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233(3), 830–849 (2004).
[CrossRef] [PubMed]

Li, C.

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

Li, C. H.

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35(6), 2218–2223 (2008).
[CrossRef] [PubMed]

Liu, T. P.

J. Wang, P. L. Torng, T. P. Liu, K. L. Chen, and T. T. Shih, “Proton MR spectroscopy in normal breasts between pre- and postmenopausal women: a preliminary study,” AJR Am. J. Roentgenol. 190(2), 505–510 (2008).
[CrossRef] [PubMed]

Lucassen, G. W.

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

Luijten, P.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Luke, G. P.

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29(5), 213–221 (2011).
[CrossRef] [PubMed]

Mali, W. P.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Mallidi, S.

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29(5), 213–221 (2011).
[CrossRef] [PubMed]

Manohar, S.

M. Heijblom, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Imaging tumor vascularization for detection and diagnosis of breast cancer,” Technol. Cancer Res. Treat. 10(6), 607–623 (2011).
[PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[CrossRef]

J. Jose, S. Manohar, R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J. Biophotonics 2(12), 701–717 (2009).
[CrossRef] [PubMed]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

Marcelli, G.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

McDonald, D. M.

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[CrossRef] [PubMed]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Menna, S.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

Miller, E. L.

Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[CrossRef] [PubMed]

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Moore, R. H.

Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[CrossRef] [PubMed]

Mumtaz, H.

E. P. Friedman, M. A. Hall-Craggs, H. Mumtaz, and A. Schneidau, “Breast MR and the appearance of the normal and abnormal nipple,” Clin. Radiol. 52(11), 854–861 (1997).
[CrossRef] [PubMed]

Nachabe, R.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Nachabé, R.

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

NessAiver, M. S.

W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233(3), 830–849 (2004).
[CrossRef] [PubMed]

Nielsen, T.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Ntziachristos, V.

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38(3), 1694–1704 (2011).
[CrossRef] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[CrossRef] [PubMed]

Oldenburg, H. S.

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Ozturk, E.

O. Sarica, E. Zeybek, and E. Ozturk, “Evaluation of nipple-areola complex with ultrasonography and magnetic resonance imaging,” J. Comput. Assist. Tomogr. 34(4), 575–586 (2010).
[CrossRef] [PubMed]

Paulsen, K. D.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

Peeters, M. J.

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

Pelivanov, I. M.

Pellizzoni, R.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Pesce, B.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Pifferi, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[CrossRef] [PubMed]

R. L. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[CrossRef] [PubMed]

Piras, D.

D. Piras, W. Xia, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[CrossRef]

Pogue, B. W.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

Poplack, S. P.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

Pramanik, M.

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35(6), 2218–2223 (2008).
[CrossRef] [PubMed]

Quarto, G.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

Razansky, D.

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38(3), 1694–1704 (2011).
[CrossRef] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[CrossRef] [PubMed]

Reinecke, D. R.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Ricci, A.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

Risso, G.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Rosenthal, A.

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38(3), 1694–1704 (2011).
[CrossRef] [PubMed]

Ruers, T. J. M.

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

Russo, F.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Rutgers, E. J.

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

Salvagnini, E.

Sarica, O.

O. Sarica, E. Zeybek, and E. Ozturk, “Evaluation of nipple-areola complex with ultrasonography and magnetic resonance imaging,” J. Comput. Assist. Tomogr. 34(4), 575–586 (2010).
[CrossRef] [PubMed]

Sassaroli, A.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).
[CrossRef] [PubMed]

Schneidau, A.

E. P. Friedman, M. A. Hall-Craggs, H. Mumtaz, and A. Schneidau, “Breast MR and the appearance of the normal and abnormal nipple,” Clin. Radiol. 52(11), 854–861 (1997).
[CrossRef] [PubMed]

Scorsolini, A.

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Sehgal, R.

M. T. Tirona, R. Sehgal, and O. Ballester, “Prevention of breast cancer (part I): epidemiology, risk factors, and risk assessment tools,” Cancer Invest. 28(7), 743–750 (2010).
[CrossRef] [PubMed]

Selb, J.

Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[CrossRef] [PubMed]

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

Shih, T. T.

J. Wang, P. L. Torng, T. P. Liu, K. L. Chen, and T. T. Shih, “Proton MR spectroscopy in normal breasts between pre- and postmenopausal women: a preliminary study,” AJR Am. J. Roentgenol. 190(2), 505–510 (2008).
[CrossRef] [PubMed]

Simon, G. H.

H. E. Daldrup-Link, G. H. Simon, and R. C. Brasch, “Imaging of tumor angiogenesis: current approaches and future prospects,” Curr. Pharm. Des. 12(21), 2661–2672 (2006).
[CrossRef] [PubMed]

Soho, S.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

Solomatin, V. S.

Song, X. M.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

Spinelli, L.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[CrossRef] [PubMed]

Srinivasan, S.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

Steenbergen, W.

M. Heijblom, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Imaging tumor vascularization for detection and diagnosis of breast cancer,” Technol. Cancer Res. Treat. 10(6), 607–623 (2011).
[PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[CrossRef]

J. Jose, S. Manohar, R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J. Biophotonics 2(12), 701–717 (2009).
[CrossRef] [PubMed]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

Sterenborg, H. J.

R. L. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[CrossRef] [PubMed]

Tannenbaum, S.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
[CrossRef] [PubMed]

Tannenbaum, S. H.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

Taroni, P.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[CrossRef] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[CrossRef] [PubMed]

Tirona, M. T.

M. T. Tirona, R. Sehgal, and O. Ballester, “Prevention of breast cancer (part I): epidemiology, risk factors, and risk assessment tools,” Cancer Invest. 28(7), 743–750 (2010).
[CrossRef] [PubMed]

Torng, P. L.

J. Wang, P. L. Torng, T. P. Liu, K. L. Chen, and T. T. Shih, “Proton MR spectroscopy in normal breasts between pre- and postmenopausal women: a preliminary study,” AJR Am. J. Roentgenol. 190(2), 505–510 (2008).
[CrossRef] [PubMed]

Torricelli, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
[CrossRef] [PubMed]

R. L. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[CrossRef] [PubMed]

Tosteson, T. D.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

Tromberg, B. J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

Uchida, Y.

T. Uematsu, S. Yuen, M. Kasami, and Y. Uchida, “Comparison of magnetic resonance imaging, multidetector row computed tomography, ultrasonography, and mammography for tumor extension of breast cancer,” Breast Cancer Res. Treat. 112(3), 461–474 (2008).
[CrossRef] [PubMed]

Uematsu, T.

T. Uematsu, S. Yuen, M. Kasami, and Y. Uchida, “Comparison of magnetic resonance imaging, multidetector row computed tomography, ultrasonography, and mammography for tumor extension of breast cancer,” Breast Cancer Res. Treat. 112(3), 461–474 (2008).
[CrossRef] [PubMed]

Uhlemann, F.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Vaartjes, S. E.

van Beek, M.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

van de Ven, S. M.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

van den Engh, F. M.

M. Heijblom, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Imaging tumor vascularization for detection and diagnosis of breast cancer,” Technol. Cancer Res. Treat. 10(6), 607–623 (2011).
[PubMed]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
[CrossRef] [PubMed]

Van der Hage, J. A.

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

van der Mark, M. B.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

van der Voort, M.

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

van Deventer, P. V.

P. V. van Deventer, “The blood supply to the nipple-areola complex of the human mammary gland,” Aesthetic Plast. Surg. 28(6), 393–398 (2004).
[CrossRef] [PubMed]

van Hespen, J. C. G.

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

van Leeuwen, T. G.

M. Heijblom, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Imaging tumor vascularization for detection and diagnosis of breast cancer,” Technol. Cancer Res. Treat. 10(6), 607–623 (2011).
[PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[CrossRef]

J. Jose, S. Manohar, R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J. Biophotonics 2(12), 701–717 (2009).
[CrossRef] [PubMed]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

van Veen, R. L.

R. L. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[CrossRef] [PubMed]

Villa, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

Wang, J.

J. Wang, P. L. Torng, T. P. Liu, K. L. Chen, and T. T. Shih, “Proton MR spectroscopy in normal breasts between pre- and postmenopausal women: a preliminary study,” AJR Am. J. Roentgenol. 190(2), 505–510 (2008).
[CrossRef] [PubMed]

Wang, L. V.

J. Yao and L. V. Wang, “Photoacoustic tomography: fundamentals, advances and prospects,” Contrast Media Mol. Imaging 6(5), 332–345 (2011).
[CrossRef] [PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35(6), 2218–2223 (2008).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

Y. Xu and L. V. Wang, “Effects of acoustic heterogeneity in breast thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1134–1146 (2003).
[CrossRef] [PubMed]

Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
[CrossRef] [PubMed]

Wesseling, J.

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

Wiegand, S. J.

J. Holash, S. J. Wiegand, and G. D. Yancopoulos, “New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF,” Oncogene 18(38), 5356–5362 (1999).
[CrossRef] [PubMed]

Wiethoff, A. J.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Xia, W.

D. Piras, W. Xia, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[CrossRef]

Xiang, L. Z.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Xing, D.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Xu, C.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

Xu, Y.

Y. Xu and L. V. Wang, “Effects of acoustic heterogeneity in breast thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1134–1146 (2003).
[CrossRef] [PubMed]

Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
[CrossRef] [PubMed]

Yancopoulos, G. D.

J. Holash, S. J. Wiegand, and G. D. Yancopoulos, “New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF,” Oncogene 18(38), 5356–5362 (1999).
[CrossRef] [PubMed]

Yang, S. H.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Yao, J.

J. Yao and L. V. Wang, “Photoacoustic tomography: fundamentals, advances and prospects,” Contrast Media Mol. Imaging 6(5), 332–345 (2011).
[CrossRef] [PubMed]

Yuan, Z.

Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

Yuen, S.

T. Uematsu, S. Yuen, M. Kasami, and Y. Uchida, “Comparison of magnetic resonance imaging, multidetector row computed tomography, ultrasonography, and mammography for tumor extension of breast cancer,” Breast Cancer Res. Treat. 112(3), 461–474 (2008).
[CrossRef] [PubMed]

Zarfos, K.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
[CrossRef] [PubMed]

Zeybek, E.

O. Sarica, E. Zeybek, and E. Ozturk, “Evaluation of nipple-areola complex with ultrasonography and magnetic resonance imaging,” J. Comput. Assist. Tomogr. 34(4), 575–586 (2010).
[CrossRef] [PubMed]

Zharinov, A. N.

Zhu, Q.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
[CrossRef] [PubMed]

Aesthetic Plast. Surg.

P. V. van Deventer, “The blood supply to the nipple-areola complex of the human mammary gland,” Aesthetic Plast. Surg. 28(6), 393–398 (2004).
[CrossRef] [PubMed]

AJR Am. J. Roentgenol.

J. Wang, P. L. Torng, T. P. Liu, K. L. Chen, and T. T. Shih, “Proton MR spectroscopy in normal breasts between pre- and postmenopausal women: a preliminary study,” AJR Am. J. Roentgenol. 190(2), 505–510 (2008).
[CrossRef] [PubMed]

Ann. Biomed. Eng.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

T. D. Khokhlova, I. M. Pelivanov, and A. A. Karabutov, “Optoacoustic tomography utilizing focused transducers: the resolution study,” Appl. Phys. Lett. 92(2), 024105 (2008).
[CrossRef]

Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88(23), 231101 (2006).
[CrossRef]

Breast

S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast 14(4), 269–275 (2005).
[CrossRef] [PubMed]

Breast Cancer Res. Treat.

T. Uematsu, S. Yuen, M. Kasami, and Y. Uchida, “Comparison of magnetic resonance imaging, multidetector row computed tomography, ultrasonography, and mammography for tumor extension of breast cancer,” Breast Cancer Res. Treat. 112(3), 461–474 (2008).
[CrossRef] [PubMed]

Cancer Invest.

M. T. Tirona, R. Sehgal, and O. Ballester, “Prevention of breast cancer (part I): epidemiology, risk factors, and risk assessment tools,” Cancer Invest. 28(7), 743–750 (2010).
[CrossRef] [PubMed]

Chem. Rev.

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[CrossRef] [PubMed]

Clin. Radiol.

E. P. Friedman, M. A. Hall-Craggs, H. Mumtaz, and A. Schneidau, “Breast MR and the appearance of the normal and abnormal nipple,” Clin. Radiol. 52(11), 854–861 (1997).
[CrossRef] [PubMed]

Contrast Media Mol. Imaging

J. Yao and L. V. Wang, “Photoacoustic tomography: fundamentals, advances and prospects,” Contrast Media Mol. Imaging 6(5), 332–345 (2011).
[CrossRef] [PubMed]

Curr. Pharm. Des.

H. E. Daldrup-Link, G. H. Simon, and R. C. Brasch, “Imaging of tumor angiogenesis: current approaches and future prospects,” Curr. Pharm. Des. 12(21), 2661–2672 (2006).
[CrossRef] [PubMed]

Eur. Radiol.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol. 19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

D. Piras, W. Xia, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[CrossRef]

IEEE Trans. Med. Imaging

Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

Y. Xu and L. V. Wang, “Effects of acoustic heterogeneity in breast thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1134–1146 (2003).
[CrossRef] [PubMed]

Interface Focus

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[CrossRef]

J. Biomed. Opt.

B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9(3), 541–552 (2004).
[CrossRef] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15(6), 060501 (2010).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt. 16(8), 087010 (2011).
[CrossRef] [PubMed]

R. L. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[CrossRef] [PubMed]

J. Biophotonics

J. Jose, S. Manohar, R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J. Biophotonics 2(12), 701–717 (2009).
[CrossRef] [PubMed]

J. Comput. Assist. Tomogr.

O. Sarica, E. Zeybek, and E. Ozturk, “Evaluation of nipple-areola complex with ultrasonography and magnetic resonance imaging,” J. Comput. Assist. Tomogr. 34(4), 575–586 (2010).
[CrossRef] [PubMed]

Med. Phys.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35(6), 2218–2223 (2008).
[CrossRef] [PubMed]

A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys. 38(3), 1694–1704 (2011).
[CrossRef] [PubMed]

Nat. Med.

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[CrossRef] [PubMed]

Nat. Rev. Cancer

G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer 3(6), 401–410 (2003).
[CrossRef] [PubMed]

Neoplasia

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7(3), 263–270 (2005).
[CrossRef] [PubMed]

Oncogene

J. Holash, S. J. Wiegand, and G. D. Yancopoulos, “New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF,” Oncogene 18(38), 5356–5362 (1999).
[CrossRef] [PubMed]

Opt. Express

Philos. Trans. R. Soc. London, Ser. A

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Trans. R. Soc. London, Ser. A 367, 3055–3072 (2009).

Phys. Med. Biol.

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[CrossRef] [PubMed]

Radiology

C. Kuhl, “The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice,” Radiology 244(2), 356–378 (2007).
[CrossRef] [PubMed]

Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258(1), 89–97 (2011).
[CrossRef] [PubMed]

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[CrossRef] [PubMed]

W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology 233(3), 830–849 (2004).
[CrossRef] [PubMed]

Spectroscopy

N. R. Jagannathan, “Breast tissue characterization by in vivo Magnetic Resonance Spectroscopy,” Spectroscopy 25, 251–260 (2011).

Technol. Cancer Res. Treat.

M. Heijblom, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Imaging tumor vascularization for detection and diagnosis of breast cancer,” Technol. Cancer Res. Treat. 10(6), 607–623 (2011).
[PubMed]

Trends Biotechnol.

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29(5), 213–221 (2011).
[CrossRef] [PubMed]

Other

“The ACR breast imaging reporting and data system (BIRADS),” (American College of Radiology 2003), www.acr.org (2011).

Z. Xie, X. Wang, R. F. Morris, F. R. Padilla, G. L. Lecarpentier, and P. L. Carson, “Photoacoustic imaging for deep targets in the breast using a multichannel 2D array transducer,” in Photonics West - Photons Plus Ultrasound: Imaging and Sensing 2011, A. Oraevsky, and L. Wang, eds. (SPIE, San-Francisco, 2011), 789907–789901: 789007–789906.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The Twente photoacoustic mammoscope. a) Aperture to insert breast. b) Ultrasound detector matrix. c) Glass window. d) Scanning system compartment. e) Q-switched Nd-YAG laser operated at 1064 nm with 10 ns pulses. f) Laser safety curtain which is drawn around the instrument during the measurements. g) Interface electronics between detector and computer. h) Linear stage carrying detector matrix driven by hand wheel to apply mild compression to the breast. i) Laser remote control unit. j) Laser power supply. Image adapted from reference [27] with permission.

Fig. 2
Fig. 2

Case 1: Diagnostic images of a 15mm infiltrating ductal carcinoma in the right breast of a 67 year old woman. a) The cranio-caudal (cc) x-ray mammogram shows a 20 mm lesion with a calcification (white box) and is highly suspicious for malignancy. b) The ultrasound image shows a 17.5 mm hypoechoic lesion (arrow). c) The transverse view of the T1 weighted MRI after gadolinium injection confirms the presence of malignancy because of the enhancement of an 18 mm lesion (white box) in the medial upper quadrant of the right breast. This image is rotated to match the orientation of the cc x-ray view in Fig. 2(a). d) A transversal cross-section with a slice-thickness of 0.24 mm through the photoacoustic volume at the expected lesion location shows a confined region with high contrast with respect to the background. With the chosen threshold for abnormality definition, the contrast of the abnormality in the 3D volume is 6.4 and the maximum diameter is 10 mm. This image is rotated to match the orientation of the cc x-ray view in Fig. 2(a). e) The imaging planes of the different imaging modalities used in this paper. Indicated are the imaging planes for cranio-caudal x-ray mammography, transverse MRI, transverse PAM and a representative ultrasound view. Imaging planes for MRI, x-ray and PAM are comparable, but the region of interest of PAM is small compared to that of MRI and x-ray, which image the complete breast. The imaging plane of ultrasound is dependent on the position of the ultrasound probe.

Fig. 3
Fig. 3

Case 2: Diagnostic images of a 31 mm infiltrating ductal carcinoma in the right breast of a 64 year old woman. a) The cranio-caudal mammogram of the right breast shows a large region with atypical and suspicious microcalcifications (white square). b) The ultrasound image shows a large inhomogeneous lobed mass (white square) with microcalcifications, which is somewhat suggestive for a benign fibroadenoma. Close to this large lesion, there is a second comparable, but smaller lesion (not visible in this image). c) The T1 weighted contrast enhanced MRI shows two lesions in the lateral quadrant of the right breast. The biggest lesion (white square) is visible in this image and measures 34 mm, the second, smaller lesion (14 mm) is positioned caudal to this lesion and is not visualized here. d) Photoacoustic imaging also shows two abnormalities, separated less than 10 mm. e) The upper abnormality (5 mm depth) has a contrast of 4.7 and a maximum diameter of 26 mm and can be seen in this transversal cross-section (slice thickness 0.24 mm). f) The smaller, lower (13 mm depth) abnormality had a contrast of 5.3 and a maximum diameter of 14 mm.

Fig. 4
Fig. 4

Case 3: Diagnostic images of a mixed infiltrating ductal and lobular carcinoma in the left breast of a 78 year old woman. a) The medio-lateral-oblique x-ray mammogram shows two lesions: a lesion of dense breast tissue (blue-dashed, lesion 1) which is associated with some microcalcifications and is positioned behind the nipple (green dotted square). The second lesion, indicated by a white box, is a density close to the skin of the nipple. b) The ultrasound images only show one oval-shaped lesion in the skin just above the nipple (white box). c) Transversal cross-sections (slice thickness 0.24 mm) through the photoacoustic image volume show a very superficial 14 mm abnormality (white box), which is attached to the skin and which is in depth connected to d) a 15 mm abnormality (blue-dashed square) with a contrast of more than 3 with respect to the background. In this cross-section a third region with high contrast could be observed (green-dotted square), which probably represents the nipple. The circular artifacts that are visible in Figs. 4(c) and 4(d) are inherent to the backprojection algorithm. These artifacts are more pronounced close to the surface as are these slices.

Fig. 5
Fig. 5

The photoacoustic image of a healthy volunteer, measured in the same configuration as patient 1. This image shows a transversal cross-section at the position of the nipple. The identified region with high-contrast is quite comparable to the region that was hypothesized to represent the nipple in case 3 (Fig. 4(d), green-dotted square).

Fig. 6
Fig. 6

a) Maximum intensity projection (MIP) in cranio-caudal direction of the photoacoustic volume of a patient with a 25 mm cyst. No confined, homogeneous, high-contrast region can be seen. The higher intensities are spread over the complete region of interest. The intensity values are not normalized in this image. b) For comparison, a MIP in cranio-caudal direction of the photoacoustic volume of a patient with a malignancy (patient 4, Fig. 2) is visualized. The malignancy is located at a comparable depth as the cyst from Fig. 6(a) and the MIP is taken over the same depth-range. Here a confined high-contrast region can be seen. In the cyst, the non-normalized intensity values are much lower than in the malignancy, despite the fact that the MIPS are from the same depth.

Fig. 7
Fig. 7

a) Per BI-RADS density classification scale, the average contrast of the lesions on PAM (gray) and x-ray mammography (white) is given. b) Here, only a differentiation between ‘low’ (BI-RADS density 1, 2) and ‘high’ (BI-RADS density 3, 4) breast density is made. The error bars show the plus and minus one standard deviation. When the lesion was positioned partly in fatty and partly in glandular tissue on the x-ray mammogram (patients 1 and 4), the contrast with respect to the fatty tissue was chosen, which always was the highest contrast.

Fig. 8
Fig. 8

Transversal cross-section through the photoacoustic mammogram of patient 4 (see Fig. 2). The lesion is defined with the help of three different thresholds, which are all expressed as a percentage of the maximum intensity value (red = 60%, blue = 40% and green = 20%). The value of the threshold strongly influences the maximum diameter of the defined lesion. In this case, the diameter of the lesion is estimated as being 8, 12 and 20 mm for the 60, 40 and 20% threshold respectively.

Tables (3)

Tables Icon

Table 1 BI-RADS breast density classification scale [29]

Tables Icon

Table 2 Overview of the patients measured in phase 1 of the study*

Tables Icon

Table 3 Measurement results from photoacoustic mammography

Metrics