Abstract

We show enhanced optical bistability induced by free carrier absorption from junction doping in substrate-removed silicon ring modulators. Such linear thermal effects dominate the loss in high-speed depletion silicon ring modulators. Optical bistability was observed with about 100 μW of input optical power. We further show that such thermal interactions causes data-dependent ring resonance shifts, and consequently severely degrade the data modulation quality at low speeds. The frequency response of this effect was measured to be about 100~200 kHz.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
    [CrossRef]
  2. X. Zheng, P. Koka, H. Schwetman, J. Lexau, R. Ho, J. E. Cunningham, and A.V. Krishnamoorthy, “Silicon photonic WDM point-to-point network for multi-chip processor interconnects,” Group IV Photonics, 2008 5th IEEE International Conference on, pp. 380–382, 2008.
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  4. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
    [CrossRef]
  5. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  6. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
    [CrossRef] [PubMed]
  7. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
    [CrossRef] [PubMed]
  8. X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010).
    [CrossRef] [PubMed]
  9. S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
    [CrossRef] [PubMed]
  10. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [CrossRef] [PubMed]
  11. G. Li, X. Zheng, J. Lexau, Y. Luo, H. Thacker, P. Dong, S. Liao, D. Feng, M. Asghari, J. Yao, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-power, high-performance Si photonic transmitter,” in Optical Fiber Communication Conference (OFC 2010), OMI2, 2010.
  12. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Exp.19, 20435–20443 (2011). http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20435
  13. X. Zheng, F. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-Low Power Arrayed CMOS Silicon Photonic Transceivers for an 80 Gbps WDM Optical Link,” OFC/NFOEC 2011, PDPA1, 2011.
  14. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [CrossRef] [PubMed]
  15. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006).
    [CrossRef] [PubMed]
  16. L. W. Luo, G. S. Wiederhecker, K. Preston, and M. Lipson, “Power insensitive silicon microring resonators,” Opt. Lett. 37(4), 590–592 (2012).
    [CrossRef] [PubMed]
  17. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9623 .
  18. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Improvement of thermal properties of ultra-high Q silicon microdisk resonators,” Opt. Express 15(25), 17305–17312 (2007).
    [CrossRef] [PubMed]
  19. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J.3, 567–579 (2011).
  20. R. Soref and B. Bennett, ““Electrooptical effect in silicon,”, IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  21. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
    [CrossRef] [PubMed]
  22. I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9577-9.
  23. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
    [CrossRef]
  24. X. Zheng, P. Koka, M. O. McCracken, H. Schwetman, J. G. Mitchell, J. Yao, R. Ho, K. Raj, and A. V. Krishnamoorthy, “Energy-efficient error control for tightly-coupled systems using silicon photonic interconnects,” J. Opt. Commun. Netw.  3, A21–A31 (2011).

2012 (2)

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9577-9.

L. W. Luo, G. S. Wiederhecker, K. Preston, and M. Lipson, “Power insensitive silicon microring resonators,” Opt. Lett. 37(4), 590–592 (2012).
[CrossRef] [PubMed]

2011 (2)

X. Zheng, P. Koka, M. O. McCracken, H. Schwetman, J. G. Mitchell, J. Yao, R. Ho, K. Raj, and A. V. Krishnamoorthy, “Energy-efficient error control for tightly-coupled systems using silicon photonic interconnects,” J. Opt. Commun. Netw.  3, A21–A31 (2011).

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J.3, 567–579 (2011).

2010 (4)

2009 (3)

2008 (1)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

2007 (2)

2006 (1)

2004 (1)

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

1987 (1)

R. Soref and B. Bennett, ““Electrooptical effect in silicon,”, IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Adibi, A.

Almeida, V. R.

Asghari, M.

Bennett, B.

R. Soref and B. Bennett, ““Electrooptical effect in silicon,”, IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Chen, L.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

Costa, J.

Cunningham, J. E.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9577-9.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J.3, 567–579 (2011).

X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010).
[CrossRef] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Dong, P.

Feng, D.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

GuoLiang Li, I.

A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

Ho, R.

Jon Lexau, P.

A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Koka,

A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Koka, P.

Krishnamoorthy, A. V.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9577-9.

X. Zheng, P. Koka, M. O. McCracken, H. Schwetman, J. G. Mitchell, J. Yao, R. Ho, K. Raj, and A. V. Krishnamoorthy, “Energy-efficient error control for tightly-coupled systems using silicon photonic interconnects,” J. Opt. Commun. Netw.  3, A21–A31 (2011).

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J.3, 567–579 (2011).

X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010).
[CrossRef] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Kung, C.-C.

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

Li, G.

Li, Q.

Liang, H.

Liao, S.

Lipson, M.

Lira, H. L. R.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

Luo, L. W.

Luo, Y.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9577-9.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J.3, 567–579 (2011).

X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010).
[CrossRef] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

Manipatruni, S.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

McCracken, M. O.

Mekis, A.

Mitchell, J. G.

Park, N.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9577-9.

Pinguet, T.

Preble, S. F.

Preston, K.

Qian, W.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Raj, K.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Ron Ho,

A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Schwetman,

A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Schwetman, H.

Shafiiha, R.

Shubin,

A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Shubin, I.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9577-9.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J.3, 567–579 (2011).

X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010).
[CrossRef] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

Soltani, M.

Soref, R.

R. Soref and B. Bennett, ““Electrooptical effect in silicon,”, IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Thacker, H.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9577-9.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J.3, 567–579 (2011).

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010).
[CrossRef] [PubMed]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Wiederhecker, G. S.

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Xu, Q.

Xuezhe Zheng, H.

A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Yao, J.

Yegnanarayanan, S.

Zheng, D.

Zheng, X.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9577-9.

X. Zheng, P. Koka, M. O. McCracken, H. Schwetman, J. G. Mitchell, J. Yao, R. Ho, K. Raj, and A. V. Krishnamoorthy, “Energy-efficient error control for tightly-coupled systems using silicon photonic interconnects,” J. Opt. Commun. Netw.  3, A21–A31 (2011).

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J.3, 567–579 (2011).

X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010).
[CrossRef] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

IEEE J. Lightwave Tech. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, ““Electrooptical effect in silicon,”, IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE Photon. J. (1)

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J.3, 567–579 (2011).

J. Opt. Commun. Netw. (1)

Nat. Photonics (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Opt. Express (7)

P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[CrossRef] [PubMed]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Improvement of thermal properties of ultra-high Q silicon microdisk resonators,” Opt. Express 15(25), 17305–17312 (2007).
[CrossRef] [PubMed]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
[CrossRef] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[CrossRef] [PubMed]

X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010).
[CrossRef] [PubMed]

S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
[CrossRef] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

Opt. Lett. (3)

Opt. Quantum Electron (1)

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9577-9.

Proc. IEEE (1)

A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Other (5)

X. Zheng, P. Koka, H. Schwetman, J. Lexau, R. Ho, J. E. Cunningham, and A.V. Krishnamoorthy, “Silicon photonic WDM point-to-point network for multi-chip processor interconnects,” Group IV Photonics, 2008 5th IEEE International Conference on, pp. 380–382, 2008.

G. Li, X. Zheng, J. Lexau, Y. Luo, H. Thacker, P. Dong, S. Liao, D. Feng, M. Asghari, J. Yao, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-power, high-performance Si photonic transmitter,” in Optical Fiber Communication Conference (OFC 2010), OMI2, 2010.

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Exp.19, 20435–20443 (2011). http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20435

X. Zheng, F. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-Low Power Arrayed CMOS Silicon Photonic Transceivers for an 80 Gbps WDM Optical Link,” OFC/NFOEC 2011, PDPA1, 2011.

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9623 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A tunable high-speed depletion silicon ring modulator. (a) Cross-section diagram of the ring waveguide high-speed section. (b) Photograph of the ring modulator.

Fig. 2
Fig. 2

25G depletion ring modulator performance. (a) Spectra of one measured resonance of the ring modulator, indicating a Q of about 8000; (b) Optical “eye” diagram of the modulator for 20 Gbps PRBS 231-1 data modulation.

Fig. 3
Fig. 3

Wavelength tuning efficiency improvement using back side substrate removal technique. (a) Tuning efficiency before (diamonds, blue line) and after (squares, pink line) substrate removal; (b) A picture of substrate removed tunable ring modulator taken from the substrate side with an etch pit window size of about 105μm × 105μm, seeing through the BOX layer.

Fig. 4
Fig. 4

(a) Q (blue line) and corresponding power enhancement factor (red line) in photon-life-time-limited rings; (b) Maximum heat power generated from junction doping FCA for ring modulators with different photon-lifetime-limited bandwidth at 1mW of input optical power.

Fig. 5
Fig. 5

Measured ring resonance shift induced by junction doping absorption for a 25G depletion ring modulator with input power from −9.8dBm to −3.8dBm before substrate removal (a), and from −13.8dBm to −8.8dBm after substrate removal (b). Optical bistability observed at 100 μW input power from substrate removed ring modulator.

Fig. 6
Fig. 6

Both on-resonance output power (a) and resonance wavelength (b) show linear correlation to the input optical power.

Fig. 7
Fig. 7

Hysteresis loop (right graph) due to optical bistability observed when laser wavelength approach ring resonance. Top green waveform X represents the input light modulation; the bottom yellow waveform Y is the ring output power measured using a receiver whose output is reversed in sign; and the middle is X versus Y.

Fig. 8
Fig. 8

(a) Thermal response time measurement for a substrate removed ring modulator. Rise time of ~3μs, and fall time of ~2μs were measured. (b) Optical “eye” diagram of the substrate removed ring modulator for 20Gbps PRBS 231-1 data modulation with no observable degradation. (c) “Eye” diagram of the substrate removed ring modulator for 622 Mbps PRBS 231-1 data modulation. (d) Severely closed “eye” for an artificial data pattern with low frequency content within the ring thermal response bandwidth.

Metrics