Abstract

Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information for characterizing and understanding the material behavior. In this paper we use a 3-dimensional model, based on direct parameter measurements, for predicting the relief structures generated on without-coverplate photopolymers. We have analyzed different spatial frequency and recording intensity distributions such as binary and blazed periodic patterns. This model was successfully applied to different photopolymers with different values of monomer diffusion.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Weiser, F. K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
    [CrossRef]
  2. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
    [CrossRef]
  3. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
    [CrossRef]
  4. G. P. Nordinand and A. R. Tanguay., “Photopolymer-based stratified volume holographic optical elements,” Opt. Lett. 17(23), 1709–1711 (1992).
    [CrossRef] [PubMed]
  5. F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
    [CrossRef]
  6. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
    [CrossRef] [PubMed]
  7. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007).
    [CrossRef] [PubMed]
  8. R. K. Kostuk, J. Castro, and D. Zhang, “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.
  9. A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D–12 (2010).
    [CrossRef]
  10. L. M. C. Sagis, “Generalized curvature expansion for the surface internal energy,” Physica A 246(3–4), 591–608 (1997).
    [CrossRef]
  11. S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253(5–6), 317–321 (1999).
    [CrossRef]
  12. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part I: low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
    [CrossRef]
  13. F. Mendel, “Chemistry, biochemistry, and safety of acrylamide. A review,” J. Agric. Food Chem. 51, 4504–4526 (2003).
  14. M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15(19), 12425–12435 (2007).
    [CrossRef] [PubMed]
  15. S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
    [CrossRef]
  16. S. Gallego, A. Márquez, M. Ortuño, J. Francés, S. Marini, A. Beléndez, and I. Pascual, “Surface relief model for photopolymers without cover plating,” Opt. Express 19(11), 10896–10906 (2011).
    [CrossRef] [PubMed]
  17. E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid Ternary Modulation Applied to Multiplexing Holograms in Photopolymers for Data Page Storage,” J. Lightwave Technol. 28, 776–783 (2010).
  18. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
    [CrossRef]
  19. S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt. 48(22), 4403–4413 (2009).
    [CrossRef] [PubMed]
  20. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
    [CrossRef] [PubMed]
  21. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt. 41(5), 845–852 (2002).
    [CrossRef] [PubMed]
  22. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
    [CrossRef] [PubMed]
  23. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
    [CrossRef] [PubMed]
  24. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
    [CrossRef] [PubMed]
  25. S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion-based model to predict the conservation of gratings recorded in poly(vinyl alcohol)-acrylamide photopolymer,” Appl. Opt. 42(29), 5839–5845 (2003).
    [CrossRef] [PubMed]

2011 (3)

2010 (3)

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid Ternary Modulation Applied to Multiplexing Holograms in Photopolymers for Data Page Storage,” J. Lightwave Technol. 28, 776–783 (2010).

M. S. Weiser, F. K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D–12 (2010).
[CrossRef]

2009 (2)

2007 (2)

2006 (2)

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

2005 (2)

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

2003 (2)

2002 (1)

2001 (1)

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

2000 (2)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
[CrossRef] [PubMed]

1999 (1)

S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253(5–6), 317–321 (1999).
[CrossRef]

1997 (1)

L. M. C. Sagis, “Generalized curvature expansion for the surface internal energy,” Physica A 246(3–4), 591–608 (1997).
[CrossRef]

1995 (1)

1992 (1)

Abe, S.

S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253(5–6), 317–321 (1999).
[CrossRef]

Álvarez, M. L.

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D–12 (2010).
[CrossRef]

Ashley, J.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Beléndez, A.

Bernal, M.-P.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Bruder, F. K.

M. S. Weiser, F. K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Burr, G. W.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Campos, J.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Carr, A. J.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

Chikama, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Close, C. E.

Coufal, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Daniels, S. M.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

Davis, J. A.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Fäcke, T.

M. S. Weiser, F. K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Fernandez, E.

Fernández, E.

Francés, J.

S. Gallego, A. Márquez, M. Ortuño, J. Francés, S. Marini, A. Beléndez, and I. Pascual, “Surface relief model for photopolymers without cover plating,” Opt. Express 19(11), 10896–10906 (2011).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
[CrossRef]

Fuentes, R.

Furushima, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Gallego, S.

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
[CrossRef]

S. Gallego, A. Márquez, M. Ortuño, J. Francés, S. Marini, A. Beléndez, and I. Pascual, “Surface relief model for photopolymers without cover plating,” Opt. Express 19(11), 10896–10906 (2011).
[CrossRef] [PubMed]

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid Ternary Modulation Applied to Multiplexing Holograms in Photopolymers for Data Page Storage,” J. Lightwave Technol. 28, 776–783 (2010).

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D–12 (2010).
[CrossRef]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt. 48(22), 4403–4413 (2009).
[CrossRef] [PubMed]

M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15(19), 12425–12435 (2007).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion-based model to predict the conservation of gratings recorded in poly(vinyl alcohol)-acrylamide photopolymer,” Appl. Opt. 42(29), 5839–5845 (2003).
[CrossRef] [PubMed]

García, C.

Gleeson, M. R.

Grabowski, M. W.

Guenther, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Heine, C.

Hidaka, M.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Hoffnagle, J. A.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Hönel, D.

M. S. Weiser, F. K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Iemmi, C.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Ishizu, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Jefferson, C. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Jurbergs, D.

M. S. Weiser, F. K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Kasala, K.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

Kelly, J. V.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

Lawrence, J. R.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt. 41(5), 845–852 (2002).
[CrossRef] [PubMed]

MacFarlane, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Maker, P.

Marcus, B.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Marini, S.

Marquez, A.

Márquez, A.

S. Gallego, A. Márquez, M. Ortuño, J. Francés, S. Marini, A. Beléndez, and I. Pascual, “Surface relief model for photopolymers without cover plating,” Opt. Express 19(11), 10896–10906 (2011).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
[CrossRef]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D–12 (2010).
[CrossRef]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt. 48(22), 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion-based model to predict the conservation of gratings recorded in poly(vinyl alcohol)-acrylamide photopolymer,” Appl. Opt. 42(29), 5839–5845 (2003).
[CrossRef] [PubMed]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

McLeod, R. R.

Mendel, F.

F. Mendel, “Chemistry, biochemistry, and safety of acrylamide. A review,” J. Agric. Food Chem. 51, 4504–4526 (2003).

Méndez, D.

Moreno, I.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Morf, R. H.

Muller, R.

Neipp, C.

Nordinand, G. P.

O’Neill, F. T.

Ochi, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Ortuño, M.

Ozawa, M.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Pascual, I.

S. Gallego, A. Márquez, M. Ortuño, J. Francés, S. Marini, A. Beléndez, and I. Pascual, “Surface relief model for photopolymers without cover plating,” Opt. Express 19(11), 10896–10906 (2011).
[CrossRef] [PubMed]

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid Ternary Modulation Applied to Multiplexing Holograms in Photopolymers for Data Page Storage,” J. Lightwave Technol. 28, 776–783 (2010).

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D–12 (2010).
[CrossRef]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt. 48(22), 4403–4413 (2009).
[CrossRef] [PubMed]

M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15(19), 12425–12435 (2007).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion-based model to predict the conservation of gratings recorded in poly(vinyl alcohol)-acrylamide photopolymer,” Appl. Opt. 42(29), 5839–5845 (2003).
[CrossRef] [PubMed]

Psaltis, D.

Rewari, A.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

Rölle, T.

M. S. Weiser, F. K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Sagis, L. M. C.

L. M. C. Sagis, “Generalized curvature expansion for the surface internal energy,” Physica A 246(3–4), 591–608 (1997).
[CrossRef]

Saravanamuttu, K.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

Shelby, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Sheridan, J. T.

Sincerbox, G. T.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Sullivan, A. C.

Tanaka, A.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Tanguay, A. R.

Tomita, Y.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Wang, X.

Weiser, M. S.

M. S. Weiser, F. K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Wilson, D.

Yzuel, M. J.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Zhang, J.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

IBM J. Res. Develop. (1)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

J. Agric. Food Chem. (1)

F. Mendel, “Chemistry, biochemistry, and safety of acrylamide. A review,” J. Agric. Food Chem. 51, 4504–4526 (2003).

J. Am. Chem. Soc. (1)

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Mater. Sci. (1)

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Macromol. Symp. (1)

M. S. Weiser, F. K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Opt. Eng. (1)

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
[CrossRef]

Phys. Lett. A (1)

S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253(5–6), 317–321 (1999).
[CrossRef]

Physica A (1)

L. M. C. Sagis, “Generalized curvature expansion for the surface internal energy,” Physica A 246(3–4), 591–608 (1997).
[CrossRef]

Proc. SPIE (1)

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D–12 (2010).
[CrossRef]

Other (1)

R. K. Kostuk, J. Castro, and D. Zhang, “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental set-up used to analyze the recording of gratings in real time.

Fig. 2
Fig. 2

Simulated and experimental diffraction efficiencies for order 0, 1, 2, 3 as a function of time for PVA/AA composition. Spatial period of 168 μm.

Fig. 3
Fig. 3

Simulated and experimental diffraction efficiencies for order 0, 1, 2, 3 as a function of time for PVA/NaAO composition. Spatial period of 168 μm.

Fig. 4
Fig. 4

Simulated and experimental diffraction efficiencies for order 0, 1, 2, 3 as a function of time for PVA/NaAO composition for different recording intensities a) 0.5 mW/cm2, b) 2 mW/cm2 and c) 4 mW/cm2. Spatial period of 664 μm.

Fig. 5
Fig. 5

Simulated and experimental diffraction efficiencies for order 0, 1, 2, 3 as a function of time for a) PVA/AA and b) PVA/NaAO compositions and spatial frequency of 5 lines/mm for binary grating.

Fig. 6
Fig. 6

Simulated diffraction efficiencies for orders −1, 0, 1, 2, 3 as a function of time for PVA/AA and for spatial period of 168 µm.

Fig. 7
Fig. 7

Surface profile after 100 s of recording, simulated for PVA/NaAO material.

Fig. 8
Fig. 8

- Polymer profile after 100 s of recording using binary illumination for a) PVA/AA material and b) PVA/NaAO material.

Fig. 9
Fig. 9

Polymer profile after 100 s of recording using blazed illumination profile and PVA/AA material.

Fig. 10
Fig. 10

Polymer profile after 100 s of recording using “quadratic” illumination and PVA/AA material.

Fig. 11
Fig. 11

Simulated diffraction efficiencies for orders 0, 1, 2, 3 as a function of time for PVA/AA and compositions and spatial period of 168 µm.

Fig. 12
Fig. 12

Monomer profile after 100 s of recording using “quadratic” illumination and PVA/AA material.

Tables (1)

Tables Icon

Table 1 Chemical Composition of the Water Solutions

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I(x)= I 0 x 2 168 2
[ M ](x,z,t) t = x D [ M ](x,z,t) x + z D [ M ](x,z,t) z F R (x,z,t)[ M ](x,z,t)
[ P ](x,z,t) t = F R (x,z,t)[ M ](x,z,t)
F R = k R I γ (x,z,t)= k R ( I 0 [ 1+Vcos( K g x) ] e α(t)z ) γ
M i,j,k = Δt Δ x 2 D m M i+1,j,k1 2 Δt Δ x 2 D m M i,j,k1 + Δt Δ x 2 D m M i1,j,k1 + Δt Δ z 2 D m M i,j+1,k1 2 Δt Δ z 2 D m M i,j,k1 + Δt Δ z 2 D m M i,j1,k1 Δt F R i,j,k1 M i,j,k1 + M i,j,k1
P i,j,k =Δt F R i,j,k1 M i,j,k1 + P i,j,k1
Δt 1 2 ( Δx ) 2 D m
d= d b + d m + d p
d= d 0 ( 1 M 0 M )+ d 0 P( 1 Sh 100 M 0 )

Metrics