Abstract

The scattering and backscattering coefficients of 15 phytoplankton species were determined in the laboratory using the acs and BB9 instruments. The spectral variability of scattering properties was investigated and the homogenous sphere model based on Mie theory was also evaluated. The scattering efficiencies at 510 nm varied from 1.42 to 2.26, and the backscattering efficiencies varied from 0.003 to 0.020. The backscattering ratios at 510 nm varied from 0.17% to 0.97%, with a mean value of 0.58%. The scattering properties were influenced by algal cell size and cellular particulate organic carbon content rather than the chlorophyll a concentration. Comparison of the measured results to the values estimated using the homogenous sphere model showed that: (1) The model could well reproduce the spectral scattering coefficient with relative deviations of 5–39%, which indicates that cell shape and internal structure have no significant effects on predicting the scattering spectra; (2) Although the homogenous sphere model generally reflected the spectral trend of backscattering spectra for most species, it severely underestimated the backscattering coefficients by 1.4–48.6 folds at 510 nm. The deviations for Chaetoceros sp. and Microcystis aeruginosa were large and might be due to algal cell chain links and intracellular gas vacuoles, respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Roesler and S. L. McLeroy-Etheridge, “Remote detection of harmful algal blooms,” in Ocean Optics XIV, S. G. Ackleson and R. Frouin, eds. (SPIE, 1998), pp. 117–128.
  2. J. P. Cannizzaro, K. L. Carder, F. R. Chen, C. A. Heil, and G. A. Vargo, “A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data,” Cont. Shelf Res. 28(1), 137–158 (2008).
    [CrossRef]
  3. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
    [CrossRef]
  4. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences Discuss. 7(3), 4295–4340 (2010).
    [CrossRef]
  5. A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25(4), 571–580 (1986).
    [CrossRef] [PubMed]
  6. D. Stramski, A. Morel, and A. Bricaud, “Modeling the light attenuation and scattering by spherical phytoplanktonic cells: a retrieval of the bulk refractive index,” Appl. Opt. 27(19), 3954–3956 (1988).
    [CrossRef] [PubMed]
  7. S. Bernard, T. A. Probyn, and R. G. Barlow, “Measured and modeled optical properties of particulate matter in the southern Benguela,” S. Afr. J. Sci. 97, 410–420 (2001).
  8. A. Bricaud, A. L. Bedhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
    [CrossRef]
  9. Y. H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11-12), 1835–1855 (1992).
    [CrossRef]
  10. D. Stramski and R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38(7), 1347–1364 (1993).
    [CrossRef]
  11. D. Stramski, G. Rosenberg, and L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115(3), 363–372 (1993).
    [CrossRef]
  12. D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
    [CrossRef]
  13. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001).
    [CrossRef] [PubMed]
  14. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
    [CrossRef]
  15. J. C. Kitchen and J. R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
    [CrossRef]
  16. A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of cocoolithophorids: use of a three-layered sphere model,” Proc. SPIE 1750, 27–33 (1992).
    [CrossRef]
  17. A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf. 89(1-4), 311–321 (2004).
    [CrossRef]
  18. W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine like particles—from theory to observation,” in Oceanography and Marine Biology: an Annual Review, R. N. Gibson, R. J. A. Atkinson, and J. D. M. Gordon, eds. (Taylor & Francis, 2007), Vol. 45, pp. 1–38.
  19. A. Quirantes and S. Bernard, “Light scattering methods for modeling algal particles as a collection of coated and/or nonspherical scatterers,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 315–324 (2006).
    [CrossRef]
  20. M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
    [CrossRef]
  21. H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
    [CrossRef]
  22. K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
    [CrossRef]
  23. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
    [CrossRef]
  24. A. L. Whitmire, W. S. Pegau, L. Karp-Boss, E. Boss, and T. J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18(14), 15073–15093 (2010).
    [CrossRef] [PubMed]
  25. G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
    [CrossRef]
  26. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
    [CrossRef] [PubMed]
  27. R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36(24), 6057–6067 (1997).
    [CrossRef] [PubMed]
  28. A. Knap, A. Michaels, A. Close, H. Ducklow, and A. Dickson, Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements, JGOFS Report No. 19 (Reprint of the IOC Manuals and Guides No. 29, UNESCO, Paris, 1994).
  29. F. Vidussi, H. Claustre, J. Bustillos-Guzman, C. Cailliau, and J. C. Marty, “Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll a from divinyl-chlorophyll a and zeaxanthin from lutein,” J. Plankton Res. 18(12), 2377–2382 (1996).
    [CrossRef]
  30. J. R. V. Zaneveld and J. C. Kitchen, ““The scattering error correction of reflecting-tube absorption waters,” Proc. SPIE 2258, 44–55 (1994).
    [CrossRef]
  31. A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
    [CrossRef]
  32. A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton. Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).
  33. A. Morel, “Optics of marine particles and marine optics,” in Particle Analysis in Oceanography S.Demers, ed., NATO ASI Series. G27 (1991) pp. 141–188.
  34. A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28(11), 1375–1393 (1981).
    [CrossRef]
  35. E. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007).
    [CrossRef]
  36. D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
    [CrossRef]
  37. D. Stramski, “Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content,” Deep Sea Res. Part I Oceanogr. Res. Pap. 46(2), 335–351 (1999).
    [CrossRef]
  38. H. J. Hu and Y. X. Wei, The Freshwater Algal of China, Systematics, Taxonomy and Ecology (Science Publisher, 2006).
  39. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
    [CrossRef]
  40. S. Liu, “Dynamic effects of phosphorus in plankton ecosystem in the Pearl River Estuary and adjacent waters,” Ph.D dissertation (Graduate School of Chinese Academy of Science, 2005.
  41. H. Guo, Illustrations of Planktons Responsible for the Blooms in Chinese Coastal Waters (Oceanpress, 2004).
  42. S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss. 6(1), 1497–1563 (2009).
    [CrossRef]
  43. D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42(18), 3634–3646 (2003).
    [CrossRef] [PubMed]
  44. J. R. V. Zaneveld and J. C. Kitchen, “The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure,” J. Geophys. Res. 100(C7), 13309–13320 (1995).
    [CrossRef]

2010

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences Discuss. 7(3), 4295–4340 (2010).
[CrossRef]

A. L. Whitmire, W. S. Pegau, L. Karp-Boss, E. Boss, and T. J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18(14), 15073–15093 (2010).
[CrossRef] [PubMed]

2009

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
[CrossRef]

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss. 6(1), 1497–1563 (2009).
[CrossRef]

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
[CrossRef]

2008

J. P. Cannizzaro, K. L. Carder, F. R. Chen, C. A. Heil, and G. A. Vargo, “A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data,” Cont. Shelf Res. 28(1), 137–158 (2008).
[CrossRef]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

2007

E. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007).
[CrossRef]

2006

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[CrossRef] [PubMed]

A. Quirantes and S. Bernard, “Light scattering methods for modeling algal particles as a collection of coated and/or nonspherical scatterers,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 315–324 (2006).
[CrossRef]

2004

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[CrossRef]

A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf. 89(1-4), 311–321 (2004).
[CrossRef]

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[CrossRef]

2003

2002

D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
[CrossRef]

2001

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001).
[CrossRef] [PubMed]

S. Bernard, T. A. Probyn, and R. G. Barlow, “Measured and modeled optical properties of particulate matter in the southern Benguela,” S. Afr. J. Sci. 97, 410–420 (2001).

1999

D. Stramski, “Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content,” Deep Sea Res. Part I Oceanogr. Res. Pap. 46(2), 335–351 (1999).
[CrossRef]

1998

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[CrossRef]

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[CrossRef]

1997

1996

F. Vidussi, H. Claustre, J. Bustillos-Guzman, C. Cailliau, and J. C. Marty, “Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll a from divinyl-chlorophyll a and zeaxanthin from lutein,” J. Plankton Res. 18(12), 2377–2382 (1996).
[CrossRef]

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[CrossRef]

1995

J. R. V. Zaneveld and J. C. Kitchen, “The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure,” J. Geophys. Res. 100(C7), 13309–13320 (1995).
[CrossRef]

1994

J. R. V. Zaneveld and J. C. Kitchen, ““The scattering error correction of reflecting-tube absorption waters,” Proc. SPIE 2258, 44–55 (1994).
[CrossRef]

1993

D. Stramski and R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38(7), 1347–1364 (1993).
[CrossRef]

D. Stramski, G. Rosenberg, and L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115(3), 363–372 (1993).
[CrossRef]

1992

J. C. Kitchen and J. R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[CrossRef]

A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of cocoolithophorids: use of a three-layered sphere model,” Proc. SPIE 1750, 27–33 (1992).
[CrossRef]

Y. H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11-12), 1835–1855 (1992).
[CrossRef]

1989

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
[CrossRef]

1988

D. Stramski, A. Morel, and A. Bricaud, “Modeling the light attenuation and scattering by spherical phytoplanktonic cells: a retrieval of the bulk refractive index,” Appl. Opt. 27(19), 3954–3956 (1988).
[CrossRef] [PubMed]

A. Bricaud, A. L. Bedhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
[CrossRef]

1986

A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25(4), 571–580 (1986).
[CrossRef] [PubMed]

A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton. Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

1983

A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
[CrossRef]

1981

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28(11), 1375–1393 (1981).
[CrossRef]

Aas, E.

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[CrossRef]

Ahn, Y. H.

Y. H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11-12), 1835–1855 (1992).
[CrossRef]

Babin, M.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

Balch, W. M.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[CrossRef]

Barlow, R. G.

S. Bernard, T. A. Probyn, and R. G. Barlow, “Measured and modeled optical properties of particulate matter in the southern Benguela,” S. Afr. J. Sci. 97, 410–420 (2001).

Barnard, A. H.

Bedhomme, A. L.

A. Bricaud, A. L. Bedhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
[CrossRef]

Behrenfeld, M. J.

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
[CrossRef]

Bernard, S.

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss. 6(1), 1497–1563 (2009).
[CrossRef]

A. Quirantes and S. Bernard, “Light scattering methods for modeling algal particles as a collection of coated and/or nonspherical scatterers,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 315–324 (2006).
[CrossRef]

A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf. 89(1-4), 311–321 (2004).
[CrossRef]

S. Bernard, T. A. Probyn, and R. G. Barlow, “Measured and modeled optical properties of particulate matter in the southern Benguela,” S. Afr. J. Sci. 97, 410–420 (2001).

Bogucki, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[CrossRef]

Boss, E.

A. L. Whitmire, W. S. Pegau, L. Karp-Boss, E. Boss, and T. J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18(14), 15073–15093 (2010).
[CrossRef] [PubMed]

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
[CrossRef]

E. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[CrossRef]

Bricaud, A.

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001).
[CrossRef] [PubMed]

A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of cocoolithophorids: use of a three-layered sphere model,” Proc. SPIE 1750, 27–33 (1992).
[CrossRef]

Y. H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11-12), 1835–1855 (1992).
[CrossRef]

A. Bricaud, A. L. Bedhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
[CrossRef]

D. Stramski, A. Morel, and A. Bricaud, “Modeling the light attenuation and scattering by spherical phytoplanktonic cells: a retrieval of the bulk refractive index,” Appl. Opt. 27(19), 3954–3956 (1988).
[CrossRef] [PubMed]

A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25(4), 571–580 (1986).
[CrossRef] [PubMed]

A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton. Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
[CrossRef]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28(11), 1375–1393 (1981).
[CrossRef]

Brown, C. W.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[CrossRef]

Bustillos-Guzman, J.

F. Vidussi, H. Claustre, J. Bustillos-Guzman, C. Cailliau, and J. C. Marty, “Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll a from divinyl-chlorophyll a and zeaxanthin from lutein,” J. Plankton Res. 18(12), 2377–2382 (1996).
[CrossRef]

Cailliau, C.

F. Vidussi, H. Claustre, J. Bustillos-Guzman, C. Cailliau, and J. C. Marty, “Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll a from divinyl-chlorophyll a and zeaxanthin from lutein,” J. Plankton Res. 18(12), 2377–2382 (1996).
[CrossRef]

Cannizzaro, J. P.

J. P. Cannizzaro, K. L. Carder, F. R. Chen, C. A. Heil, and G. A. Vargo, “A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data,” Cont. Shelf Res. 28(1), 137–158 (2008).
[CrossRef]

Carder, K. L.

J. P. Cannizzaro, K. L. Carder, F. R. Chen, C. A. Heil, and G. A. Vargo, “A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data,” Cont. Shelf Res. 28(1), 137–158 (2008).
[CrossRef]

Charlton, F.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[CrossRef]

Chen, F. R.

J. P. Cannizzaro, K. L. Carder, F. R. Chen, C. A. Heil, and G. A. Vargo, “A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data,” Cont. Shelf Res. 28(1), 137–158 (2008).
[CrossRef]

Claustre, H.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
[CrossRef]

F. Vidussi, H. Claustre, J. Bustillos-Guzman, C. Cailliau, and J. C. Marty, “Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll a from divinyl-chlorophyll a and zeaxanthin from lutein,” J. Plankton Res. 18(12), 2377–2382 (1996).
[CrossRef]

Collier, R.

E. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007).
[CrossRef]

Cowles, T. J.

Dall’Olmo, G.

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
[CrossRef]

Dana, D. R.

de Haan, J. F.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[CrossRef]

Dekker, A. G.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[CrossRef]

Donaghay, P. L.

Fennel, K.

E. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007).
[CrossRef]

Franz, B. A.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

Guillard, R. R. L.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[CrossRef]

Heil, C. A.

J. P. Cannizzaro, K. L. Carder, F. R. Chen, C. A. Heil, and G. A. Vargo, “A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data,” Cont. Shelf Res. 28(1), 137–158 (2008).
[CrossRef]

Hoogenboom, H. J.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[CrossRef]

Hovenier, J. W.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[CrossRef]

Hunt, A. J.

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
[CrossRef]

Kaczmarek, S.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

Karp-Boss, L.

Kitchen, J. C.

J. R. V. Zaneveld and J. C. Kitchen, “The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure,” J. Geophys. Res. 100(C7), 13309–13320 (1995).
[CrossRef]

J. R. V. Zaneveld and J. C. Kitchen, ““The scattering error correction of reflecting-tube absorption waters,” Proc. SPIE 2258, 44–55 (1994).
[CrossRef]

A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of cocoolithophorids: use of a three-layered sphere model,” Proc. SPIE 1750, 27–33 (1992).
[CrossRef]

J. C. Kitchen and J. R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[CrossRef]

Kostadinov, T. S.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences Discuss. 7(3), 4295–4340 (2010).
[CrossRef]

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
[CrossRef]

Król, T.

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[CrossRef]

Kuten, E.

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[CrossRef]

Larson, G.

E. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007).
[CrossRef]

Legendre, L.

D. Stramski, G. Rosenberg, and L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115(3), 363–372 (1993).
[CrossRef]

Lewis, M. R.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

Lofftus, K.

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
[CrossRef]

Maffione, R. A.

Maritorena, S.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences Discuss. 7(3), 4295–4340 (2010).
[CrossRef]

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
[CrossRef]

Marty, J. C.

F. Vidussi, H. Claustre, J. Bustillos-Guzman, C. Cailliau, and J. C. Marty, “Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll a from divinyl-chlorophyll a and zeaxanthin from lutein,” J. Plankton Res. 18(12), 2377–2382 (1996).
[CrossRef]

Moore, C. M.

Morel, A.

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001).
[CrossRef] [PubMed]

Y. H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11-12), 1835–1855 (1992).
[CrossRef]

A. Bricaud, A. L. Bedhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
[CrossRef]

D. Stramski, A. Morel, and A. Bricaud, “Modeling the light attenuation and scattering by spherical phytoplanktonic cells: a retrieval of the bulk refractive index,” Appl. Opt. 27(19), 3954–3956 (1988).
[CrossRef] [PubMed]

A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25(4), 571–580 (1986).
[CrossRef] [PubMed]

A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton. Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
[CrossRef]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28(11), 1375–1393 (1981).
[CrossRef]

Pegau, W. S.

A. L. Whitmire, W. S. Pegau, L. Karp-Boss, E. Boss, and T. J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18(14), 15073–15093 (2010).
[CrossRef] [PubMed]

E. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007).
[CrossRef]

Piskozub, J.

Prieur, L.

A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
[CrossRef]

Probyn, T. A.

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss. 6(1), 1497–1563 (2009).
[CrossRef]

S. Bernard, T. A. Probyn, and R. G. Barlow, “Measured and modeled optical properties of particulate matter in the southern Benguela,” S. Afr. J. Sci. 97, 410–420 (2001).

Quinby-Hunt, M. S.

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
[CrossRef]

Quirantes, A.

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss. 6(1), 1497–1563 (2009).
[CrossRef]

A. Quirantes and S. Bernard, “Light scattering methods for modeling algal particles as a collection of coated and/or nonspherical scatterers,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 315–324 (2006).
[CrossRef]

A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf. 89(1-4), 311–321 (2004).
[CrossRef]

Reynolds, R. A.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

D. Stramski and R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38(7), 1347–1364 (1993).
[CrossRef]

Rhoades, B.

Rosenberg, G.

D. Stramski, G. Rosenberg, and L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115(3), 363–372 (1993).
[CrossRef]

Röttgers, R.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

Schreurs, R.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[CrossRef]

Sciandra, A.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
[CrossRef]

Shapiro, D.

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
[CrossRef]

Siegel, D. A.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences Discuss. 7(3), 4295–4340 (2010).
[CrossRef]

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
[CrossRef]

Slade, W. H.

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
[CrossRef]

Stramska, M.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

Stramski, D.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[CrossRef]

D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42(18), 3634–3646 (2003).
[CrossRef] [PubMed]

D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
[CrossRef]

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001).
[CrossRef] [PubMed]

D. Stramski, “Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content,” Deep Sea Res. Part I Oceanogr. Res. Pap. 46(2), 335–351 (1999).
[CrossRef]

D. Stramski, G. Rosenberg, and L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115(3), 363–372 (1993).
[CrossRef]

D. Stramski and R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38(7), 1347–1364 (1993).
[CrossRef]

D. Stramski, A. Morel, and A. Bricaud, “Modeling the light attenuation and scattering by spherical phytoplanktonic cells: a retrieval of the bulk refractive index,” Appl. Opt. 27(19), 3954–3956 (1988).
[CrossRef] [PubMed]

Sullivan, J. M.

Twardowski, M. S.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[CrossRef] [PubMed]

Vaillancourt, R. D.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[CrossRef]

Vargo, G. A.

J. P. Cannizzaro, K. L. Carder, F. R. Chen, C. A. Heil, and G. A. Vargo, “A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data,” Cont. Shelf Res. 28(1), 137–158 (2008).
[CrossRef]

Vassen, W.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[CrossRef]

Vidussi, F.

F. Vidussi, H. Claustre, J. Bustillos-Guzman, C. Cailliau, and J. C. Marty, “Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll a from divinyl-chlorophyll a and zeaxanthin from lutein,” J. Plankton Res. 18(12), 2377–2382 (1996).
[CrossRef]

Volten, H.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[CrossRef]

Voss, K. J.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[CrossRef]

Westberry, T. K.

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
[CrossRef]

Whitmire, A. L.

Witkowski, K.

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[CrossRef]

Wouts, R.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[CrossRef]

Zaneveld, J. R. V.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
[CrossRef] [PubMed]

J. R. V. Zaneveld and J. C. Kitchen, “The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure,” J. Geophys. Res. 100(C7), 13309–13320 (1995).
[CrossRef]

J. R. V. Zaneveld and J. C. Kitchen, ““The scattering error correction of reflecting-tube absorption waters,” Proc. SPIE 2258, 44–55 (1994).
[CrossRef]

J. C. Kitchen and J. R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[CrossRef]

A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of cocoolithophorids: use of a three-layered sphere model,” Proc. SPIE 1750, 27–33 (1992).
[CrossRef]

Zielinski, A.

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[CrossRef]

Appl. Opt.

Biogeosciences

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[CrossRef]

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
[CrossRef]

Biogeosciences Discuss.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences Discuss. 7(3), 4295–4340 (2010).
[CrossRef]

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss. 6(1), 1497–1563 (2009).
[CrossRef]

Can. Bull. Fish. Aquat. Sci.

A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton. Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

Cont. Shelf Res.

J. P. Cannizzaro, K. L. Carder, F. R. Chen, C. A. Heil, and G. A. Vargo, “A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data,” Cont. Shelf Res. 28(1), 137–158 (2008).
[CrossRef]

Deep Sea Res. Part I Oceanogr. Res. Pap.

D. Stramski, “Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content,” Deep Sea Res. Part I Oceanogr. Res. Pap. 46(2), 335–351 (1999).
[CrossRef]

Deep-Sea Res.

Y. H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11-12), 1835–1855 (1992).
[CrossRef]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28(11), 1375–1393 (1981).
[CrossRef]

Hydrobiologia

E. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007).
[CrossRef]

J. Geophys. Res.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
[CrossRef]

J. R. V. Zaneveld and J. C. Kitchen, “The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure,” J. Geophys. Res. 100(C7), 13309–13320 (1995).
[CrossRef]

J. Plankton Res.

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[CrossRef]

A. Bricaud, A. L. Bedhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
[CrossRef]

F. Vidussi, H. Claustre, J. Bustillos-Guzman, C. Cailliau, and J. C. Marty, “Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll a from divinyl-chlorophyll a and zeaxanthin from lutein,” J. Plankton Res. 18(12), 2377–2382 (1996).
[CrossRef]

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

A. Quirantes and S. Bernard, “Light scattering methods for modeling algal particles as a collection of coated and/or nonspherical scatterers,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 315–324 (2006).
[CrossRef]

A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf. 89(1-4), 311–321 (2004).
[CrossRef]

Limnol. Oceanogr.

J. C. Kitchen and J. R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[CrossRef]

D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 47(2), 392–403 (2002).
[CrossRef]

D. Stramski and R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38(7), 1347–1364 (1993).
[CrossRef]

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
[CrossRef]

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[CrossRef]

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
[CrossRef]

Mar. Biol.

D. Stramski, G. Rosenberg, and L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115(3), 363–372 (1993).
[CrossRef]

Opt. Express

Proc. SPIE

J. R. V. Zaneveld and J. C. Kitchen, ““The scattering error correction of reflecting-tube absorption waters,” Proc. SPIE 2258, 44–55 (1994).
[CrossRef]

A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of cocoolithophorids: use of a three-layered sphere model,” Proc. SPIE 1750, 27–33 (1992).
[CrossRef]

Prog. Oceanogr.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[CrossRef]

S. Afr. J. Sci.

S. Bernard, T. A. Probyn, and R. G. Barlow, “Measured and modeled optical properties of particulate matter in the southern Benguela,” S. Afr. J. Sci. 97, 410–420 (2001).

Other

C. S. Roesler and S. L. McLeroy-Etheridge, “Remote detection of harmful algal blooms,” in Ocean Optics XIV, S. G. Ackleson and R. Frouin, eds. (SPIE, 1998), pp. 117–128.

W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine like particles—from theory to observation,” in Oceanography and Marine Biology: an Annual Review, R. N. Gibson, R. J. A. Atkinson, and J. D. M. Gordon, eds. (Taylor & Francis, 2007), Vol. 45, pp. 1–38.

A. Morel, “Optics of marine particles and marine optics,” in Particle Analysis in Oceanography S.Demers, ed., NATO ASI Series. G27 (1991) pp. 141–188.

A. Knap, A. Michaels, A. Close, H. Ducklow, and A. Dickson, Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements, JGOFS Report No. 19 (Reprint of the IOC Manuals and Guides No. 29, UNESCO, Paris, 1994).

S. Liu, “Dynamic effects of phosphorus in plankton ecosystem in the Pearl River Estuary and adjacent waters,” Ph.D dissertation (Graduate School of Chinese Academy of Science, 2005.

H. Guo, Illustrations of Planktons Responsible for the Blooms in Chinese Coastal Waters (Oceanpress, 2004).

H. J. Hu and Y. X. Wei, The Freshwater Algal of China, Systematics, Taxonomy and Ecology (Science Publisher, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the homogenous sphere model used to derive information about the scattering and backscattering spectra from the measured absorption spectrum, particle size distribution, and attenuation spectral behavior.

Fig. 2
Fig. 2

Scattering efficiency factors Q b for (A) diatom species, (B) Chlorophyceae species, and (C) other species.

Fig. 3
Fig. 3

Backscattering efficiency factors Q bb at nine wavelengths for (A) diatom species, (B) Chlorophyceae species, and (C) other species. Error bars represent one standard deviation of the mean of data.

Fig. 4
Fig. 4

Backscattering ratio b bp ¯ at nine wavelengths for (A) diatom species, (B) Chlorophyceae species, and (C) other species. Error bars represent one standard deviation of the mean of data.

Fig. 5
Fig. 5

(A) The scattering cross-section σ b (510.6) versus the equivalent spherical diameter for all cultures; and (B) the backscattering cross-section σ bb (510) versus the equivalent spherical diameter for 15 species. Error bars represent one standard deviation of the mean of data.

Fig. 6
Fig. 6

(A) The scattering cross-section σ b (510.6) versus cellular POC content; and (B) the backscattering cross-section σ bb (510) versus cellular POC content. Error bars represent one standard deviation of the mean of data.

Fig. 8
Fig. 8

Comparison between the measured backscattering coefficients at eight wavelengths and the modeled values as computed using the Mie theory for 15 phytoplankton species. The modeled backscattering coefficients were adjusted to the measured values at 510 nm to facilitate comparison of the spectral shapes. The ratios of the measured b bp (510) and the modeled b bp (510) values, denoted Ratio, are given for each species.

Fig. 7
Fig. 7

Comparison between the measured spectral scattering coefficient (solid lines) and the modeled spectrum (dotted lines) from the homogeneous spherical model for the 15 phytoplankton species tested.

Tables (1)

Tables Icon

Table 1 Summary of Phytoplankton Characteristics

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ bb (λ)= b bp (λ) N/V
Q bb ¯ (λ)= b b (λ)×[ π 4 Dmin Dmax F(D) D 2 d(D) ] 1
σ b (510.6)=3× 10 12 ES D 1.72 ( R 2 =0.94)
σ bb (510)=4× 10 15 ES D 2.41 ( R 2 =0.81)
σ b (510.6)=5× 10 12 Carbo n 0.699 ( R 2 =0.91)
σ bb (510)=7× 10 15 Carbo n 1.026 ( R 2 =0.80)

Metrics