Abstract

For the next generation of phoXonic, plasmonic, opto-mechanical and microfluidic devices, the capability to create 3D microstructures is highly desirable. Fabrication of such structures by conventional top-down techniques generally requires multiple time-consuming steps and is limited in the ability to define features spanning multiple layers at prescribed angles. 3D direct write lithography (3DDW) has the capability to draw nearly arbitrary structures, but is an inherently slow serial writing process. Here we present a method, denoted focused proximity field nanopatterning (FPnP), that combines 3DDW with single or multiphoton interference lithography (IL). By exposing a thick photoresist layer having a phase mask pattern imprinted on its surface with a tightly focused laser beam, we produce locally unique complex structures. The morphology can be varied based on beam and mask parameters. Patterns may be written rapidly in a single shot mode with arbitrary positions defined by the direct write, thus exploiting the control of 3DDW with the enhanced speed of phase mask IL. Here we show the ability for this technique to rapidly produce arrays of “stand-up” far IR resonators.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
    [CrossRef]
  2. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett. 23(22), 1745–1747 (1998).
    [CrossRef] [PubMed]
  3. M. Farsari, G. Filippidis, and C. Fotakis, “Fabrication of three-dimensional structures by three-photon polymerization,” Opt. Lett. 30(23), 3180–3182 (2005).
    [CrossRef] [PubMed]
  4. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [CrossRef] [PubMed]
  5. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
    [CrossRef] [PubMed]
  6. M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
    [CrossRef] [PubMed]
  7. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
    [CrossRef]
  8. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
    [CrossRef]
  9. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(32), 3578–3582 (2010).
    [CrossRef] [PubMed]
  10. J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, “Three-dimensional optical lithography for photonic microstructures,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1557–1560 (2006).
    [CrossRef]
  11. S. Jeon, D. J. Shir, Y. S. Nam, R. Nidetz, M. Highland, D. G. Cahill, J. A. Rogers, M. F. Su, I. F. El-Kady, C. G. Christodoulou, and G. R. Bogart, “Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures,” Opt. Express 15(10), 6358–6366 (2007).
    [CrossRef] [PubMed]
  12. J. P. Singer, S. E. Kooi, and E. L. Thomas, “Focused laser spike (FLaSk) annealing of photoactivated chemically amplified resists for rapid hierarchical patterning,” Nanoscale 3(7), 2730–2738 (2011).
    [CrossRef] [PubMed]
  13. M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, and C. K. Ober, “Spatially controlled fabrication of nanoporous block copolymers,” Chem. Mater. 16(20), 3800–3808 (2004).
    [CrossRef]
  14. H.-W. Li and W. T. S. Huck, “Ordered block-copolymer assembly using nanoimprint lithography,” Nano Lett. 4(9), 1633–1636 (2004).
    [CrossRef]
  15. S. A. Pruzinsky and P. V. Braun, “Fabrication and characterization of two-photon polymerized features in colloidal crystals,” Adv. Funct. Mater. 15(12), 1995–2004 (2005).
    [CrossRef]
  16. S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
    [CrossRef]
  17. S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
    [CrossRef] [PubMed]
  18. C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
    [CrossRef] [PubMed]
  19. M. C. George, E. C. Nelson, J. A. Rogers, and P. V. Braun, “Direct fabrication of 3D periodic inorganic microstructures using conformal phase masks,” Angew. Chem. Int. Ed. Engl. 48(1), 144–148 (2009).
    [CrossRef] [PubMed]
  20. G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
    [CrossRef]
  21. K. B. Fan, A. C. Strikwerda, H. Tao, R. D. Averitt, and X. Zhang, “3D stand-up metamaterials with a purely magnetic resonance at terahertz frequencies,” in Mems 2010: 23rd Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest, (2010) pp. 843–846.
  22. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
    [CrossRef] [PubMed]
  23. J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, and D. H. Gracias, “Nanoscale origami for 3D optics,” Small 7(14), 1943–1948 (2011).
    [CrossRef] [PubMed]
  24. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
    [CrossRef] [PubMed]
  25. J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88(18), 181112 (2006).
    [CrossRef]
  26. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization,” Opt. Express 14(2), 800–809 (2006).
    [CrossRef] [PubMed]
  27. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  28. C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi, B Basic Res. 244(4), 1181–1187 (2007).
    [CrossRef]

2011 (3)

J. P. Singer, S. E. Kooi, and E. L. Thomas, “Focused laser spike (FLaSk) annealing of photoactivated chemically amplified resists for rapid hierarchical patterning,” Nanoscale 3(7), 2730–2738 (2011).
[CrossRef] [PubMed]

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[CrossRef] [PubMed]

J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, and D. H. Gracias, “Nanoscale origami for 3D optics,” Small 7(14), 1943–1948 (2011).
[CrossRef] [PubMed]

2010 (4)

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[CrossRef] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[CrossRef]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

2009 (4)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

M. C. George, E. C. Nelson, J. A. Rogers, and P. V. Braun, “Direct fabrication of 3D periodic inorganic microstructures using conformal phase masks,” Angew. Chem. Int. Ed. Engl. 48(1), 144–148 (2009).
[CrossRef] [PubMed]

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[CrossRef]

2008 (1)

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[CrossRef]

2007 (2)

2006 (4)

F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization,” Opt. Express 14(2), 800–809 (2006).
[CrossRef] [PubMed]

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88(18), 181112 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, “Three-dimensional optical lithography for photonic microstructures,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1557–1560 (2006).
[CrossRef]

2005 (3)

S. A. Pruzinsky and P. V. Braun, “Fabrication and characterization of two-photon polymerized features in colloidal crystals,” Adv. Funct. Mater. 15(12), 1995–2004 (2005).
[CrossRef]

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

M. Farsari, G. Filippidis, and C. Fotakis, “Fabrication of three-dimensional structures by three-photon polymerization,” Opt. Lett. 30(23), 3180–3182 (2005).
[CrossRef] [PubMed]

2004 (4)

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[CrossRef] [PubMed]

M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, and C. K. Ober, “Spatially controlled fabrication of nanoporous block copolymers,” Chem. Mater. 16(20), 3800–3808 (2004).
[CrossRef]

H.-W. Li and W. T. S. Huck, “Ordered block-copolymer assembly using nanoimprint lithography,” Nano Lett. 4(9), 1633–1636 (2004).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

2000 (1)

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[CrossRef]

1998 (1)

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Barbastathis, G.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[CrossRef] [PubMed]

Bautista, G.

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[CrossRef]

Bickauskaite, G.

Blanford, C. F.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, “Three-dimensional optical lithography for photonic microstructures,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1557–1560 (2006).
[CrossRef]

Bogart, G. R.

Braun, P. V.

M. C. George, E. C. Nelson, J. A. Rogers, and P. V. Braun, “Direct fabrication of 3D periodic inorganic microstructures using conformal phase masks,” Angew. Chem. Int. Ed. Engl. 48(1), 144–148 (2009).
[CrossRef] [PubMed]

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[CrossRef]

S. A. Pruzinsky and P. V. Braun, “Fabrication and characterization of two-photon polymerized features in colloidal crystals,” Adv. Funct. Mater. 15(12), 1995–2004 (2005).
[CrossRef]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[CrossRef] [PubMed]

Brener, I.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[CrossRef] [PubMed]

Brueck, S. R. J.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Burckel, D. B.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[CrossRef] [PubMed]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Cahill, D. G.

Chang, C. H.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[CrossRef] [PubMed]

Chiyoda, K.

Cho, J. H.

J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, and D. H. Gracias, “Nanoscale origami for 3D optics,” Small 7(14), 1943–1948 (2011).
[CrossRef] [PubMed]

Choi, H. J.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[CrossRef] [PubMed]

Christodoulou, C. G.

Cirelli, R.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[CrossRef] [PubMed]

Coenjarts, C.

M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, and C. K. Ober, “Spatially controlled fabrication of nanoporous block copolymers,” Chem. Mater. 16(20), 3800–3808 (2004).
[CrossRef]

Constant, K.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88(18), 181112 (2006).
[CrossRef]

Daria, V. R.

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[CrossRef]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Denning, R. G.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, “Three-dimensional optical lithography for photonic microstructures,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1557–1560 (2006).
[CrossRef]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Doan, V.

Douki, K.

M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, and C. K. Ober, “Spatially controlled fabrication of nanoporous block copolymers,” Chem. Mater. 16(20), 3800–3808 (2004).
[CrossRef]

Economou, E. N.

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi, B Basic Res. 244(4), 1181–1187 (2007).
[CrossRef]

El-Kady, I. F.

Ellis, A. R.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[CrossRef] [PubMed]

Fan, W.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Farsari, M.

Filippidis, G.

Fischer, J.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[CrossRef]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

Formanek, F.

Fotakis, C.

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Frauenglass, A.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Gadonas, R.

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Gao, H.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[CrossRef] [PubMed]

Garcia-Santamaria, F.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[CrossRef]

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

George, M. C.

M. C. George, E. C. Nelson, J. A. Rogers, and P. V. Braun, “Direct fabrication of 3D periodic inorganic microstructures using conformal phase masks,” Angew. Chem. Int. Ed. Engl. 48(1), 144–148 (2009).
[CrossRef] [PubMed]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Ginn, J. C.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[CrossRef] [PubMed]

Goto, K.

M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, and C. K. Ober, “Spatially controlled fabrication of nanoporous block copolymers,” Chem. Mater. 16(20), 3800–3808 (2004).
[CrossRef]

Gracias, D. H.

J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, and D. H. Gracias, “Nanoscale origami for 3D optics,” Small 7(14), 1943–1948 (2011).
[CrossRef] [PubMed]

Heitzman, C. E.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[CrossRef] [PubMed]

Hesse, W. R.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[CrossRef] [PubMed]

Highland, M.

Ho, K.-M.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88(18), 181112 (2006).
[CrossRef]

Huck, W. T. S.

H.-W. Li and W. T. S. Huck, “Ordered block-copolymer assembly using nanoimprint lithography,” Nano Lett. 4(9), 1633–1636 (2004).
[CrossRef]

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Ikuta, K.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[CrossRef]

Ishikawa, A.

Jarutis, V.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

Jeon, S.

S. Jeon, D. J. Shir, Y. S. Nam, R. Nidetz, M. Highland, D. G. Cahill, J. A. Rogers, M. F. Su, I. F. El-Kady, C. G. Christodoulou, and G. R. Bogart, “Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures,” Opt. Express 15(10), 6358–6366 (2007).
[CrossRef] [PubMed]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[CrossRef] [PubMed]

Juodkazis, S.

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

Kafesaki, M.

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi, B Basic Res. 244(4), 1181–1187 (2007).
[CrossRef]

Kawata, S.

Kenis, P. J. A.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[CrossRef] [PubMed]

Keung, M. D.

J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, and D. H. Gracias, “Nanoscale origami for 3D optics,” Small 7(14), 1943–1948 (2011).
[CrossRef] [PubMed]

Kim, C.-H.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88(18), 181112 (2006).
[CrossRef]

Kim, J. G.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[CrossRef] [PubMed]

Kim, Y.-S.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88(18), 181112 (2006).
[CrossRef]

Kooi, S. E.

J. P. Singer, S. E. Kooi, and E. L. Thomas, “Focused laser spike (FLaSk) annealing of photoactivated chemically amplified resists for rapid hierarchical patterning,” Nanoscale 3(7), 2730–2738 (2011).
[CrossRef] [PubMed]

Koschny, T.

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi, B Basic Res. 244(4), 1181–1187 (2007).
[CrossRef]

Lagae, L.

J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, and D. H. Gracias, “Nanoscale origami for 3D optics,” Small 7(14), 1943–1948 (2011).
[CrossRef] [PubMed]

Lee, J.-H.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88(18), 181112 (2006).
[CrossRef]

Li, H.-W.

H.-W. Li and W. T. S. Huck, “Ordered block-copolymer assembly using nanoimprint lithography,” Nano Lett. 4(9), 1633–1636 (2004).
[CrossRef]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Li, M.

M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, and C. K. Ober, “Spatially controlled fabrication of nanoporous block copolymers,” Chem. Mater. 16(20), 3800–3808 (2004).
[CrossRef]

Li, X.

M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, and C. K. Ober, “Spatially controlled fabrication of nanoporous block copolymers,” Chem. Mater. 16(20), 3800–3808 (2004).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Malinauskas, M.

Malloy, K. J.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Maruo, S.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[CrossRef]

Minhas, B. K.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Misawa, H.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

Moshchalkov, V. V.

J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, and D. H. Gracias, “Nanoscale origami for 3D optics,” Small 7(14), 1943–1948 (2011).
[CrossRef] [PubMed]

Nam, Y. S.

Nelson, E. C.

M. C. George, E. C. Nelson, J. A. Rogers, and P. V. Braun, “Direct fabrication of 3D periodic inorganic microstructures using conformal phase masks,” Angew. Chem. Int. Ed. Engl. 48(1), 144–148 (2009).
[CrossRef] [PubMed]

Nidetz, R.

Ober, C. K.

M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, and C. K. Ober, “Spatially controlled fabrication of nanoporous block copolymers,” Chem. Mater. 16(20), 3800–3808 (2004).
[CrossRef]

Oh, C. H.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88(18), 181112 (2006).
[CrossRef]

Park, J.-U.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[CrossRef] [PubMed]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Pruzinsky, S. A.

S. A. Pruzinsky and P. V. Braun, “Fabrication and characterization of two-photon polymerized features in colloidal crystals,” Adv. Funct. Mater. 15(12), 1995–2004 (2005).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Rinne, S. A.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[CrossRef]

Roche, O. M.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, “Three-dimensional optical lithography for photonic microstructures,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1557–1560 (2006).
[CrossRef]

Rogers, J. A.

M. C. George, E. C. Nelson, J. A. Rogers, and P. V. Braun, “Direct fabrication of 3D periodic inorganic microstructures using conformal phase masks,” Angew. Chem. Int. Ed. Engl. 48(1), 144–148 (2009).
[CrossRef] [PubMed]

S. Jeon, D. J. Shir, Y. S. Nam, R. Nidetz, M. Highland, D. G. Cahill, J. A. Rogers, M. F. Su, I. F. El-Kady, C. G. Christodoulou, and G. R. Bogart, “Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures,” Opt. Express 15(10), 6358–6366 (2007).
[CrossRef] [PubMed]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[CrossRef] [PubMed]

Romero, M. J.

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Schwartz, B. J.

Scrimgeour, J.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, “Three-dimensional optical lithography for photonic microstructures,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1557–1560 (2006).
[CrossRef]

Seet, K. K.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

Sharp, D. N.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, “Three-dimensional optical lithography for photonic microstructures,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1557–1560 (2006).
[CrossRef]

Shir, D. J.

Siddiqui, M.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[CrossRef] [PubMed]

Sinclair, M. B.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[CrossRef] [PubMed]

Singer, J. P.

J. P. Singer, S. E. Kooi, and E. L. Thomas, “Focused laser spike (FLaSk) annealing of photoactivated chemically amplified resists for rapid hierarchical patterning,” Nanoscale 3(7), 2730–2738 (2011).
[CrossRef] [PubMed]

Smilgies, D. M.

M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, and C. K. Ober, “Spatially controlled fabrication of nanoporous block copolymers,” Chem. Mater. 16(20), 3800–3808 (2004).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi, B Basic Res. 244(4), 1181–1187 (2007).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Su, M. F.

Takeyasu, N.

Tanaka, T.

Tapang, G.

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[CrossRef]

Ten Eyck, G. A.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[CrossRef] [PubMed]

Thiel, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Thomas, E. L.

J. P. Singer, S. E. Kooi, and E. L. Thomas, “Focused laser spike (FLaSk) annealing of photoactivated chemically amplified resists for rapid hierarchical patterning,” Nanoscale 3(7), 2730–2738 (2011).
[CrossRef] [PubMed]

Tian, L.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[CrossRef] [PubMed]

Turberfield, A. J.

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, “Three-dimensional optical lithography for photonic microstructures,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1557–1560 (2006).
[CrossRef]

Van Dorpe, P.

J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, and D. H. Gracias, “Nanoscale origami for 3D optics,” Small 7(14), 1943–1948 (2011).
[CrossRef] [PubMed]

Verellen, N.

J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, and D. H. Gracias, “Nanoscale origami for 3D optics,” Small 7(14), 1943–1948 (2011).
[CrossRef] [PubMed]

von Freymann, G.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Vrijen, R.

Wegener, M.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Wendt, J. R.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[CrossRef] [PubMed]

Witzgall, G.

Yablonovitch, E.

Yang, S.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Zhou, J.

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi, B Basic Res. 244(4), 1181–1187 (2007).
[CrossRef]

Zukauskas, A.

Adv. Funct. Mater. (1)

S. A. Pruzinsky and P. V. Braun, “Fabrication and characterization of two-photon polymerized features in colloidal crystals,” Adv. Funct. Mater. 15(12), 1995–2004 (2005).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (3)

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5053–5057 (2010).
[CrossRef] [PubMed]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.) 22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, “Three-dimensional optical lithography for photonic microstructures,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1557–1560 (2006).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

M. C. George, E. C. Nelson, J. A. Rogers, and P. V. Braun, “Direct fabrication of 3D periodic inorganic microstructures using conformal phase masks,” Angew. Chem. Int. Ed. Engl. 48(1), 144–148 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76(19), 2656–2658 (2000).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[CrossRef]

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88(18), 181112 (2006).
[CrossRef]

Chem. Mater. (1)

M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, and C. K. Ober, “Spatially controlled fabrication of nanoporous block copolymers,” Chem. Mater. 16(20), 3800–3808 (2004).
[CrossRef]

Nano Lett. (2)

H.-W. Li and W. T. S. Huck, “Ordered block-copolymer assembly using nanoimprint lithography,” Nano Lett. 4(9), 1633–1636 (2004).
[CrossRef]

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[CrossRef] [PubMed]

Nanoscale (1)

J. P. Singer, S. E. Kooi, and E. L. Thomas, “Focused laser spike (FLaSk) annealing of photoactivated chemically amplified resists for rapid hierarchical patterning,” Nanoscale 3(7), 2730–2738 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Nat. Photonics (1)

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[CrossRef]

Opt. Commun. (1)

G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi, B Basic Res. 244(4), 1181–1187 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[CrossRef] [PubMed]

Science (2)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Small (1)

J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, and D. H. Gracias, “Nanoscale origami for 3D optics,” Small 7(14), 1943–1948 (2011).
[CrossRef] [PubMed]

Other (1)

K. B. Fan, A. C. Strikwerda, H. Tao, R. D. Averitt, and X. Zhang, “3D stand-up metamaterials with a purely magnetic resonance at terahertz frequencies,” in Mems 2010: 23rd Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest, (2010) pp. 843–846.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme for FPnP. (a) Photoresist and optional sacrificial layer are spin coated sequentially onto the substrate. (b) At elevated temperature (>60 °C) the surface mask is imprinted into the top surface. (c) FPnP patterning is performed by multiple single shot exposures. (d) Sacrificial layer is removed, at this point another cycle of patterning and/or 3DDW can be performed, after final patterning post exposure bake is executed. (e) Sample is developed leaving the final structure. (f) Cross-section of patterning with key parameters, resist and sacrificial layer thickness (t and s), and branch angle (α) indicated.

Fig. 2
Fig. 2

(a) 2D finite elements simulation of two-photon intensity pattern from 0.78a wavelength light with varying focus through a a/2 square wave surface imprint. Top row from left to right is focused placed 4a, 8a, and 12a above the imprint midpoint (indicated by dashed line). Bottom row is 4a, 8a, and 12a below the midpoint. (b-c) tilted (30°) SEM images of two SU-8 structures fabricated at different focus heights with 780 nm light and a = 1 µm. (b) Focus 8 μm above, is representative of interference dominated structures, while (c) focus 2 μm below, is representative of diffraction dominated. (Scale bars 2 μm).

Fig. 3
Fig. 3

FEM simulations of two-photon intensities for a variety of NA and λ values of a beam focused 2a below the surface of the structure described in Fig. 2. It can be seen that these two parameters can control the aspects (angles/number of beams, proportion of intensity in each beam) of the final intensity pattern.

Fig. 4
Fig. 4

Structures generated with two different thicknesses of sacrificial polystyrene layers. (a) Sample with reduced top grating, patterned with both NIR (left, 780 nm) and green (right, 532 nm) 3DDW. (b) An array of structures with removed top grating layer leading to gaps between the branches. (Scale bars 5 µm).

Fig. 5
Fig. 5

Structures created by a sequence of FPnP, surface pattern clearing by heating, and subsequent registered MPL. Realignment for 3DDW patterning step after sample removal and heating was assisted by optical contrast which formed in the FPnP patterned areas after baking the resist due to shrinkage of the exposed resist. (Scale bar 5 µm).

Fig. 6
Fig. 6

FEM simulations of the resonant peak position (f) and normalized peak width (Δf/ f) of arrays of “stand-up” resonators produced by FPnP with varying processing parameters. Initial orientation (*) was chosen to be a similar, simplified geometry to the devices shown in Fig. 4(b): 15 µm-period square arrays, 6 µm resist thickness (t), 780 nm exposure (leading to ~26° branch angle (α)), and 7.25 µm SL thickness (s). Starting from this configuration, t (a-b, 3-6 µm), α (c-d, 20-32°), and s (e-f, 4.55-9.95 µm) were varied to determine the effects of these parameters. Images of the simulated unit cells for the maximum variations in geometric parameters (a-f) and initial configuration (*) are shown on the right side of the figure.

Fig. 7
Fig. 7

Measured far-IR reflectivity spectra of the response of resonator arrays fabricated with various sample parameters along with inset SEM images of the structure. Resonant response is indicated by a suppression of the reflectivity. Dashed lines show FEM simulations of simplified structures showing qualitative agreement with the observed results. Parameters of the resonators compared to those in Fig. 6 were i) t = 4.07, s = 9.06, and α = 25.72, ii) t = 5.63, s = 8.04, and α = 25.82, iii) t = 7.03, s = 6.28, and α = 25.45, with additional changes to match the specific features of the structure. (Scale bars 5 µm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a( sin θ i +nsin θ d )=mλ
w λ πNA 1+( πN A 2 λ Z ) 2

Metrics