Abstract

A novel abnormal pixels (APs) detection approach is proposed to remove artefacts from reconstructed images in cone beam computed tomography (CBCT). This approach is based on the symmetry detection of sum-of-projections (SOP). Because some factors affect the SOP symmetry, we combine dyadic wavelet transform-based singularity detection to extract the APs. Next, the Laplacian solution (LS) method is employed to restore the APs in each projection image. Experimental results demonstrate the efficiency of our approach for different imaging tasks.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53(5), 1337–1349 (2002).
    [CrossRef] [PubMed]
  2. J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: radiation dose and image quality evaluation,” Radiology 221(3), 657–667 (2001).
    [CrossRef] [PubMed]
  3. B. Chen and R. Ning, “Cone-beam volume CT breast imaging: feasibility study,” Med. Phys. 29(5), 755–770 (2002).
    [CrossRef] [PubMed]
  4. F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
    [CrossRef] [PubMed]
  5. C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol. 53(19), 319–350 (2008).
    [CrossRef] [PubMed]
  6. L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
    [CrossRef] [PubMed]
  7. S. C. Lee, H. K. Kim, I. K. Chun, M. H. Cho, S. Y. Lee, and M. H. Cho, “A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging,” Phys. Med. Biol. 48(24), 4173–4185 (2003).
    [CrossRef] [PubMed]
  8. R. Ning, B. Chen, R. F. Yu, D. Conover, X. Y. Tang, and Y. Ning, “Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation,” IEEE Trans. Med. Imaging 19(9), 949–963 (2000).
    [CrossRef] [PubMed]
  9. D. Prell, Y. Kyriakou, and W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
    [CrossRef] [PubMed]
  10. J. Sijbers and A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
    [CrossRef] [PubMed]
  11. Y. Kyriakou, D. Prell, and W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), 385–391 (2009).
    [CrossRef] [PubMed]
  12. X. Tang, R. Ning, R. Yu, and D. Conover, “Cone beam volume CT image artifacts caused by defective cells in x-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
    [CrossRef] [PubMed]
  13. R. A. Ketcham, “New algorithms for ring artifact removal,” Proc. SPIE 6318, 63180O, 63180O-7 (2006).
    [CrossRef]
  14. J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” Proc. SPIE 3336, 348–354 (1998).
    [CrossRef]
  15. S. Titarenko, V. Titarenko, A. Kyrieleis, and P. J. Withers, “A ring artifact suppression algorithm based on a priori information,” Appl. Phys. Lett. 95(7), 071113 (2009).
    [CrossRef]
  16. F. Sadi, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
    [CrossRef] [PubMed]
  17. C. Raven, “Numerical removal of ring artifacts in microtomography,” Rev. Sci. Instrum. 69(8), 2978–2980 (1998).
    [CrossRef]
  18. M. Boin and A. Haibel, “Compensation of ring artefacts in synchrotron tomographic images,” Opt. Express 14(25), 12071–12075 (2006).
    [CrossRef] [PubMed]
  19. B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact removal with combined wavelet--Fourier filtering,” Opt. Express 17(10), 8567–8591 (2009).
    [CrossRef] [PubMed]
  20. A. N. M. Ashrafuzzaman, S. Y. Lee, and M. K. Hasan, “A self-adaptive approach for the detection and correction of stripes in the sinogram: suppression of ring artifacts in CT imaging,” EURASIP J. Adv. Signal Process. 2011(1), 183547 (2011).
    [CrossRef]
  21. E. M. A. Anas, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
    [CrossRef] [PubMed]
  22. K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys. 33(6), 1695–1706 (2006).
    [CrossRef] [PubMed]
  23. M. Defrise and R. Clack, “A Cone-Beam Reconstruction Algorithm Using Shift-Variant Filtering and Cone-Beam Backprojection,” IEEE Trans. Med. Imaging 13(1), 186–195 (1994).
    [CrossRef] [PubMed]
  24. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice-Hall, 1997), Chap. 2.
  25. S. R. Deans, The Radon Transform and Some of Its Applications (Dover Publications, Inc., 2007), Chap. 3.
  26. S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern. Anal. 14(7), 710–732 (1992).
    [CrossRef]
  27. S. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets,” IEEE Trans. Inf. Theory 38(2), 617–643 (1992).
    [CrossRef]
  28. N. F. Law and W. C. Siu, “An efficient computational scheme for the two-dimensional overcomplete wavelet transform,” IEEE Trans. Signal Process. 50(11), 2806–2819 (2002).
    [CrossRef]
  29. S. L. Barna, M. W. Tate, S. M. Gruner, and E. F. Eikenberry, “Calibration procedures for charge-coupled device x-ray detectors,” Rev. Sci. Instrum. 70(7), 2927–2934 (1999).
    [CrossRef]
  30. D. W. Nelms, H. I. Shukla, E. Nixon, J. E. Bayouth, and R. T. Flynn, “Assessment of three dead detector correction methods for cone-beam computed tomography,” Med. Phys. 36(10), 4569–4576 (2009).
    [CrossRef] [PubMed]
  31. A. C. Kak and M. Slaney, Principle of computerized tomographic imaging (IEEE Press, 1988), Chap. 3.
  32. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1(6), 612–619 (1984).
    [CrossRef]
  33. X. Q. Yang, Y. Z. Meng, Q. M. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
    [PubMed]
  34. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
    [CrossRef] [PubMed]

2011

A. N. M. Ashrafuzzaman, S. Y. Lee, and M. K. Hasan, “A self-adaptive approach for the detection and correction of stripes in the sinogram: suppression of ring artifacts in CT imaging,” EURASIP J. Adv. Signal Process. 2011(1), 183547 (2011).
[CrossRef]

2010

E. M. A. Anas, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
[CrossRef] [PubMed]

X. Q. Yang, Y. Z. Meng, Q. M. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

F. Sadi, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
[CrossRef] [PubMed]

2009

S. Titarenko, V. Titarenko, A. Kyrieleis, and P. J. Withers, “A ring artifact suppression algorithm based on a priori information,” Appl. Phys. Lett. 95(7), 071113 (2009).
[CrossRef]

Y. Kyriakou, D. Prell, and W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), 385–391 (2009).
[CrossRef] [PubMed]

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

D. Prell, Y. Kyriakou, and W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
[CrossRef] [PubMed]

D. W. Nelms, H. I. Shukla, E. Nixon, J. E. Bayouth, and R. T. Flynn, “Assessment of three dead detector correction methods for cone-beam computed tomography,” Med. Phys. 36(10), 4569–4576 (2009).
[CrossRef] [PubMed]

B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact removal with combined wavelet--Fourier filtering,” Opt. Express 17(10), 8567–8591 (2009).
[CrossRef] [PubMed]

2008

C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol. 53(19), 319–350 (2008).
[CrossRef] [PubMed]

2006

R. A. Ketcham, “New algorithms for ring artifact removal,” Proc. SPIE 6318, 63180O, 63180O-7 (2006).
[CrossRef]

M. Boin and A. Haibel, “Compensation of ring artefacts in synchrotron tomographic images,” Opt. Express 14(25), 12071–12075 (2006).
[CrossRef] [PubMed]

K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys. 33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

2005

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[CrossRef] [PubMed]

2004

J. Sijbers and A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[CrossRef] [PubMed]

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

2003

S. C. Lee, H. K. Kim, I. K. Chun, M. H. Cho, S. Y. Lee, and M. H. Cho, “A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging,” Phys. Med. Biol. 48(24), 4173–4185 (2003).
[CrossRef] [PubMed]

2002

B. Chen and R. Ning, “Cone-beam volume CT breast imaging: feasibility study,” Med. Phys. 29(5), 755–770 (2002).
[CrossRef] [PubMed]

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53(5), 1337–1349 (2002).
[CrossRef] [PubMed]

N. F. Law and W. C. Siu, “An efficient computational scheme for the two-dimensional overcomplete wavelet transform,” IEEE Trans. Signal Process. 50(11), 2806–2819 (2002).
[CrossRef]

2001

J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: radiation dose and image quality evaluation,” Radiology 221(3), 657–667 (2001).
[CrossRef] [PubMed]

X. Tang, R. Ning, R. Yu, and D. Conover, “Cone beam volume CT image artifacts caused by defective cells in x-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

2000

R. Ning, B. Chen, R. F. Yu, D. Conover, X. Y. Tang, and Y. Ning, “Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation,” IEEE Trans. Med. Imaging 19(9), 949–963 (2000).
[CrossRef] [PubMed]

1999

S. L. Barna, M. W. Tate, S. M. Gruner, and E. F. Eikenberry, “Calibration procedures for charge-coupled device x-ray detectors,” Rev. Sci. Instrum. 70(7), 2927–2934 (1999).
[CrossRef]

1998

J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” Proc. SPIE 3336, 348–354 (1998).
[CrossRef]

C. Raven, “Numerical removal of ring artifacts in microtomography,” Rev. Sci. Instrum. 69(8), 2978–2980 (1998).
[CrossRef]

1994

M. Defrise and R. Clack, “A Cone-Beam Reconstruction Algorithm Using Shift-Variant Filtering and Cone-Beam Backprojection,” IEEE Trans. Med. Imaging 13(1), 186–195 (1994).
[CrossRef] [PubMed]

1992

S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern. Anal. 14(7), 710–732 (1992).
[CrossRef]

S. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets,” IEEE Trans. Inf. Theory 38(2), 617–643 (1992).
[CrossRef]

1984

Anas, E. M. A.

E. M. A. Anas, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
[CrossRef] [PubMed]

Ashrafuzzaman, A. N. M.

A. N. M. Ashrafuzzaman, S. Y. Lee, and M. K. Hasan, “A self-adaptive approach for the detection and correction of stripes in the sinogram: suppression of ring artifacts in CT imaging,” EURASIP J. Adv. Signal Process. 2011(1), 183547 (2011).
[CrossRef]

Badea, C. T.

C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol. 53(19), 319–350 (2008).
[CrossRef] [PubMed]

Barna, S. L.

S. L. Barna, M. W. Tate, S. M. Gruner, and E. F. Eikenberry, “Calibration procedures for charge-coupled device x-ray detectors,” Rev. Sci. Instrum. 70(7), 2927–2934 (1999).
[CrossRef]

Bayouth, J. E.

D. W. Nelms, H. I. Shukla, E. Nixon, J. E. Bayouth, and R. T. Flynn, “Assessment of three dead detector correction methods for cone-beam computed tomography,” Med. Phys. 36(10), 4569–4576 (2009).
[CrossRef] [PubMed]

Bock, M.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Boin, M.

Boone, J. M.

K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys. 33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: radiation dose and image quality evaluation,” Radiology 221(3), 657–667 (2001).
[CrossRef] [PubMed]

J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” Proc. SPIE 3336, 348–354 (1998).
[CrossRef]

Chen, B.

B. Chen and R. Ning, “Cone-beam volume CT breast imaging: feasibility study,” Med. Phys. 29(5), 755–770 (2002).
[CrossRef] [PubMed]

R. Ning, B. Chen, R. F. Yu, D. Conover, X. Y. Tang, and Y. Ning, “Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation,” IEEE Trans. Med. Imaging 19(9), 949–963 (2000).
[CrossRef] [PubMed]

Chen, L. Y.

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

Cho, M. H.

S. C. Lee, H. K. Kim, I. K. Chun, M. H. Cho, S. Y. Lee, and M. H. Cho, “A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging,” Phys. Med. Biol. 48(24), 4173–4185 (2003).
[CrossRef] [PubMed]

S. C. Lee, H. K. Kim, I. K. Chun, M. H. Cho, S. Y. Lee, and M. H. Cho, “A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging,” Phys. Med. Biol. 48(24), 4173–4185 (2003).
[CrossRef] [PubMed]

Chun, I. K.

S. C. Lee, H. K. Kim, I. K. Chun, M. H. Cho, S. Y. Lee, and M. H. Cho, “A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging,” Phys. Med. Biol. 48(24), 4173–4185 (2003).
[CrossRef] [PubMed]

Clack, R.

M. Defrise and R. Clack, “A Cone-Beam Reconstruction Algorithm Using Shift-Variant Filtering and Cone-Beam Backprojection,” IEEE Trans. Med. Imaging 13(1), 186–195 (1994).
[CrossRef] [PubMed]

Conover, D.

X. Tang, R. Ning, R. Yu, and D. Conover, “Cone beam volume CT image artifacts caused by defective cells in x-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

R. Ning, B. Chen, R. F. Yu, D. Conover, X. Y. Tang, and Y. Ning, “Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation,” IEEE Trans. Med. Imaging 19(9), 949–963 (2000).
[CrossRef] [PubMed]

Davis, L. C.

Defrise, M.

M. Defrise and R. Clack, “A Cone-Beam Reconstruction Algorithm Using Shift-Variant Filtering and Cone-Beam Backprojection,” IEEE Trans. Med. Imaging 13(1), 186–195 (1994).
[CrossRef] [PubMed]

Drangova, M.

C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol. 53(19), 319–350 (2008).
[CrossRef] [PubMed]

Eikenberry, E. F.

S. L. Barna, M. W. Tate, S. M. Gruner, and E. F. Eikenberry, “Calibration procedures for charge-coupled device x-ray detectors,” Rev. Sci. Instrum. 70(7), 2927–2934 (1999).
[CrossRef]

Feldkamp, L. A.

Fink, C.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Flynn, R. T.

D. W. Nelms, H. I. Shukla, E. Nixon, J. E. Bayouth, and R. T. Flynn, “Assessment of three dead detector correction methods for cone-beam computed tomography,” Med. Phys. 36(10), 4569–4576 (2009).
[CrossRef] [PubMed]

Fusenig, N. E.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Ge, S. A. P.

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

Gong, H.

X. Q. Yang, Y. Z. Meng, Q. M. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

Greschus, S.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Gruner, S. M.

S. L. Barna, M. W. Tate, S. M. Gruner, and E. F. Eikenberry, “Calibration procedures for charge-coupled device x-ray detectors,” Rev. Sci. Instrum. 70(7), 2927–2934 (1999).
[CrossRef]

Haibel, A.

Han, T.

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

Hasan, M. K.

A. N. M. Ashrafuzzaman, S. Y. Lee, and M. K. Hasan, “A self-adaptive approach for the detection and correction of stripes in the sinogram: suppression of ring artifacts in CT imaging,” EURASIP J. Adv. Signal Process. 2011(1), 183547 (2011).
[CrossRef]

F. Sadi, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
[CrossRef] [PubMed]

E. M. A. Anas, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
[CrossRef] [PubMed]

Henkelman, R. M.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[CrossRef] [PubMed]

Holdsworth, D. W.

C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol. 53(19), 319–350 (2008).
[CrossRef] [PubMed]

Hwang, W. L.

S. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets,” IEEE Trans. Inf. Theory 38(2), 617–643 (1992).
[CrossRef]

Jaffray, D. A.

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53(5), 1337–1349 (2002).
[CrossRef] [PubMed]

Johnson, G. A.

C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol. 53(19), 319–350 (2008).
[CrossRef] [PubMed]

Kalender, W. A.

D. Prell, Y. Kyriakou, and W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
[CrossRef] [PubMed]

Y. Kyriakou, D. Prell, and W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), 385–391 (2009).
[CrossRef] [PubMed]

Ketcham, R. A.

R. A. Ketcham, “New algorithms for ring artifact removal,” Proc. SPIE 6318, 63180O, 63180O-7 (2006).
[CrossRef]

Kiessling, F.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Kim, H. K.

S. C. Lee, H. K. Kim, I. K. Chun, M. H. Cho, S. Y. Lee, and M. H. Cho, “A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging,” Phys. Med. Biol. 48(24), 4173–4185 (2003).
[CrossRef] [PubMed]

Kress, J. W.

Kwan, A. L. C.

K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys. 33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

Kyriakou, Y.

Y. Kyriakou, D. Prell, and W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), 385–391 (2009).
[CrossRef] [PubMed]

D. Prell, Y. Kyriakou, and W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
[CrossRef] [PubMed]

Kyrieleis, A.

S. Titarenko, V. Titarenko, A. Kyrieleis, and P. J. Withers, “A ring artifact suppression algorithm based on a priori information,” Appl. Phys. Lett. 95(7), 071113 (2009).
[CrossRef]

Lai, C. J.

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

Law, N. F.

N. F. Law and W. C. Siu, “An efficient computational scheme for the two-dimensional overcomplete wavelet transform,” IEEE Trans. Signal Process. 50(11), 2806–2819 (2002).
[CrossRef]

Lee, S. C.

S. C. Lee, H. K. Kim, I. K. Chun, M. H. Cho, S. Y. Lee, and M. H. Cho, “A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging,” Phys. Med. Biol. 48(24), 4173–4185 (2003).
[CrossRef] [PubMed]

Lee, S. Y.

A. N. M. Ashrafuzzaman, S. Y. Lee, and M. K. Hasan, “A self-adaptive approach for the detection and correction of stripes in the sinogram: suppression of ring artifacts in CT imaging,” EURASIP J. Adv. Signal Process. 2011(1), 183547 (2011).
[CrossRef]

E. M. A. Anas, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
[CrossRef] [PubMed]

F. Sadi, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
[CrossRef] [PubMed]

S. C. Lee, H. K. Kim, I. K. Chun, M. H. Cho, S. Y. Lee, and M. H. Cho, “A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging,” Phys. Med. Biol. 48(24), 4173–4185 (2003).
[CrossRef] [PubMed]

Lichy, M. P.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Lindfors, K. K.

J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: radiation dose and image quality evaluation,” Radiology 221(3), 657–667 (2001).
[CrossRef] [PubMed]

J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” Proc. SPIE 3336, 348–354 (1998).
[CrossRef]

Liu, X. M.

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

Luo, Q. M.

X. Q. Yang, Y. Z. Meng, Q. M. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

Mallat, S.

S. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets,” IEEE Trans. Inf. Theory 38(2), 617–643 (1992).
[CrossRef]

S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern. Anal. 14(7), 710–732 (1992).
[CrossRef]

Marone, F.

Martinez, A. A.

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53(5), 1337–1349 (2002).
[CrossRef] [PubMed]

Meng, Y. Z.

X. Q. Yang, Y. Z. Meng, Q. M. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

Miller, D. F.

K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys. 33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

Moll, J.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Mueller, M. M.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Münch, B.

Nelms, D. W.

D. W. Nelms, H. I. Shukla, E. Nixon, J. E. Bayouth, and R. T. Flynn, “Assessment of three dead detector correction methods for cone-beam computed tomography,” Med. Phys. 36(10), 4569–4576 (2009).
[CrossRef] [PubMed]

Nelson, T. R.

J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: radiation dose and image quality evaluation,” Radiology 221(3), 657–667 (2001).
[CrossRef] [PubMed]

Ning, R.

B. Chen and R. Ning, “Cone-beam volume CT breast imaging: feasibility study,” Med. Phys. 29(5), 755–770 (2002).
[CrossRef] [PubMed]

X. Tang, R. Ning, R. Yu, and D. Conover, “Cone beam volume CT image artifacts caused by defective cells in x-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

R. Ning, B. Chen, R. F. Yu, D. Conover, X. Y. Tang, and Y. Ning, “Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation,” IEEE Trans. Med. Imaging 19(9), 949–963 (2000).
[CrossRef] [PubMed]

Ning, Y.

R. Ning, B. Chen, R. F. Yu, D. Conover, X. Y. Tang, and Y. Ning, “Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation,” IEEE Trans. Med. Imaging 19(9), 949–963 (2000).
[CrossRef] [PubMed]

Nixon, E.

D. W. Nelms, H. I. Shukla, E. Nixon, J. E. Bayouth, and R. T. Flynn, “Assessment of three dead detector correction methods for cone-beam computed tomography,” Med. Phys. 36(10), 4569–4576 (2009).
[CrossRef] [PubMed]

Postnov, A.

J. Sijbers and A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[CrossRef] [PubMed]

Prell, D.

D. Prell, Y. Kyriakou, and W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
[CrossRef] [PubMed]

Y. Kyriakou, D. Prell, and W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), 385–391 (2009).
[CrossRef] [PubMed]

Raven, C.

C. Raven, “Numerical removal of ring artifacts in microtomography,” Rev. Sci. Instrum. 69(8), 2978–2980 (1998).
[CrossRef]

Sadi, F.

F. Sadi, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
[CrossRef] [PubMed]

Seibert, J. A.

J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: radiation dose and image quality evaluation,” Radiology 221(3), 657–667 (2001).
[CrossRef] [PubMed]

J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” Proc. SPIE 3336, 348–354 (1998).
[CrossRef]

Semmler, W.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Sharpe, J.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[CrossRef] [PubMed]

Shaw, C. C.

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

Shen, Y. T.

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

Shukla, H. I.

D. W. Nelms, H. I. Shukla, E. Nixon, J. E. Bayouth, and R. T. Flynn, “Assessment of three dead detector correction methods for cone-beam computed tomography,” Med. Phys. 36(10), 4569–4576 (2009).
[CrossRef] [PubMed]

Siewerdsen, J. H.

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53(5), 1337–1349 (2002).
[CrossRef] [PubMed]

Sijbers, J.

J. Sijbers and A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[CrossRef] [PubMed]

Siu, W. C.

N. F. Law and W. C. Siu, “An efficient computational scheme for the two-dimensional overcomplete wavelet transform,” IEEE Trans. Signal Process. 50(11), 2806–2819 (2002).
[CrossRef]

Sled, J. G.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[CrossRef] [PubMed]

Stampanoni, M.

Tang, X.

X. Tang, R. Ning, R. Yu, and D. Conover, “Cone beam volume CT image artifacts caused by defective cells in x-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

Tang, X. Y.

R. Ning, B. Chen, R. F. Yu, D. Conover, X. Y. Tang, and Y. Ning, “Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation,” IEEE Trans. Med. Imaging 19(9), 949–963 (2000).
[CrossRef] [PubMed]

Tate, M. W.

S. L. Barna, M. W. Tate, S. M. Gruner, and E. F. Eikenberry, “Calibration procedures for charge-coupled device x-ray detectors,” Rev. Sci. Instrum. 70(7), 2927–2934 (1999).
[CrossRef]

Titarenko, S.

S. Titarenko, V. Titarenko, A. Kyrieleis, and P. J. Withers, “A ring artifact suppression algorithm based on a priori information,” Appl. Phys. Lett. 95(7), 071113 (2009).
[CrossRef]

Titarenko, V.

S. Titarenko, V. Titarenko, A. Kyrieleis, and P. J. Withers, “A ring artifact suppression algorithm based on a priori information,” Appl. Phys. Lett. 95(7), 071113 (2009).
[CrossRef]

Traupe, H.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Trtik, P.

Vosseler, S.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Walls, J. R.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[CrossRef] [PubMed]

Wang, T. P.

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

Whitman, G. J.

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

Withers, P. J.

S. Titarenko, V. Titarenko, A. Kyrieleis, and P. J. Withers, “A ring artifact suppression algorithm based on a priori information,” Appl. Phys. Lett. 95(7), 071113 (2009).
[CrossRef]

Wong, J. W.

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53(5), 1337–1349 (2002).
[CrossRef] [PubMed]

Yang, K.

K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys. 33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

Yang, W. T.

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

Yang, X. Q.

X. Q. Yang, Y. Z. Meng, Q. M. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

Yu, R.

X. Tang, R. Ning, R. Yu, and D. Conover, “Cone beam volume CT image artifacts caused by defective cells in x-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

Yu, R. F.

R. Ning, B. Chen, R. F. Yu, D. Conover, X. Y. Tang, and Y. Ning, “Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation,” IEEE Trans. Med. Imaging 19(9), 949–963 (2000).
[CrossRef] [PubMed]

Zhong, S.

S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern. Anal. 14(7), 710–732 (1992).
[CrossRef]

Zhong, Y. C.

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Titarenko, V. Titarenko, A. Kyrieleis, and P. J. Withers, “A ring artifact suppression algorithm based on a priori information,” Appl. Phys. Lett. 95(7), 071113 (2009).
[CrossRef]

Comput. Biol. Med.

F. Sadi, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
[CrossRef] [PubMed]

EURASIP J. Adv. Signal Process.

A. N. M. Ashrafuzzaman, S. Y. Lee, and M. K. Hasan, “A self-adaptive approach for the detection and correction of stripes in the sinogram: suppression of ring artifacts in CT imaging,” EURASIP J. Adv. Signal Process. 2011(1), 183547 (2011).
[CrossRef]

IEEE Trans. Inf. Theory

S. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets,” IEEE Trans. Inf. Theory 38(2), 617–643 (1992).
[CrossRef]

IEEE Trans. Med. Imaging

M. Defrise and R. Clack, “A Cone-Beam Reconstruction Algorithm Using Shift-Variant Filtering and Cone-Beam Backprojection,” IEEE Trans. Med. Imaging 13(1), 186–195 (1994).
[CrossRef] [PubMed]

R. Ning, B. Chen, R. F. Yu, D. Conover, X. Y. Tang, and Y. Ning, “Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation,” IEEE Trans. Med. Imaging 19(9), 949–963 (2000).
[CrossRef] [PubMed]

IEEE Trans. Pattern. Anal.

S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern. Anal. 14(7), 710–732 (1992).
[CrossRef]

IEEE Trans. Signal Process.

N. F. Law and W. C. Siu, “An efficient computational scheme for the two-dimensional overcomplete wavelet transform,” IEEE Trans. Signal Process. 50(11), 2806–2819 (2002).
[CrossRef]

Int. J. Radiat. Oncol. Biol. Phys.

D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 53(5), 1337–1349 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. XRay Sci. Technol.

X. Q. Yang, Y. Z. Meng, Q. M. Luo, and H. Gong, “High resolution in vivo micro-CT with flat panel detector based on amorphous silicon,” J. XRay Sci. Technol. 18(4), 381–392 (2010).
[PubMed]

Med. Phys.

D. W. Nelms, H. I. Shukla, E. Nixon, J. E. Bayouth, and R. T. Flynn, “Assessment of three dead detector correction methods for cone-beam computed tomography,” Med. Phys. 36(10), 4569–4576 (2009).
[CrossRef] [PubMed]

K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys. 33(6), 1695–1706 (2006).
[CrossRef] [PubMed]

B. Chen and R. Ning, “Cone-beam volume CT breast imaging: feasibility study,” Med. Phys. 29(5), 755–770 (2002).
[CrossRef] [PubMed]

L. Y. Chen, Y. T. Shen, C. J. Lai, T. Han, Y. C. Zhong, S. A. P. Ge, X. M. Liu, T. P. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36(9), 4007–4014 (2009).
[CrossRef] [PubMed]

X. Tang, R. Ning, R. Yu, and D. Conover, “Cone beam volume CT image artifacts caused by defective cells in x-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

Nat. Med.

F. Kiessling, S. Greschus, M. P. Lichy, M. Bock, C. Fink, S. Vosseler, J. Moll, M. M. Mueller, N. E. Fusenig, H. Traupe, and W. Semmler, “Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis,” Nat. Med. 10(10), 1133–1138 (2004).
[CrossRef] [PubMed]

Opt. Express

Phys. Med. Biol.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[CrossRef] [PubMed]

C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol. 53(19), 319–350 (2008).
[CrossRef] [PubMed]

D. Prell, Y. Kyriakou, and W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
[CrossRef] [PubMed]

J. Sijbers and A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[CrossRef] [PubMed]

Y. Kyriakou, D. Prell, and W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), 385–391 (2009).
[CrossRef] [PubMed]

S. C. Lee, H. K. Kim, I. K. Chun, M. H. Cho, S. Y. Lee, and M. H. Cho, “A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging,” Phys. Med. Biol. 48(24), 4173–4185 (2003).
[CrossRef] [PubMed]

E. M. A. Anas, S. Y. Lee, and M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
[CrossRef] [PubMed]

Proc. SPIE

R. A. Ketcham, “New algorithms for ring artifact removal,” Proc. SPIE 6318, 63180O, 63180O-7 (2006).
[CrossRef]

J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” Proc. SPIE 3336, 348–354 (1998).
[CrossRef]

Radiology

J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: radiation dose and image quality evaluation,” Radiology 221(3), 657–667 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

C. Raven, “Numerical removal of ring artifacts in microtomography,” Rev. Sci. Instrum. 69(8), 2978–2980 (1998).
[CrossRef]

S. L. Barna, M. W. Tate, S. M. Gruner, and E. F. Eikenberry, “Calibration procedures for charge-coupled device x-ray detectors,” Rev. Sci. Instrum. 70(7), 2927–2934 (1999).
[CrossRef]

Other

A. C. Kak and M. Slaney, Principle of computerized tomographic imaging (IEEE Press, 1988), Chap. 3.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice-Hall, 1997), Chap. 2.

S. R. Deans, The Radon Transform and Some of Its Applications (Dover Publications, Inc., 2007), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

System geometry of the CBCT.

Fig. 2
Fig. 2

Illustration of the imaging field in CBCT.

Fig. 3
Fig. 3

Flow chart of our proposed approach to detect and restore the Aps.

Fig. 4
Fig. 4

Validation of the symmetry of the SOP with different projection numbers. (a) The SOP of a numerical phantom, with 6400 projections. (b) The total error as a function of the projection numbers. (c) Pointwise detail of the errors with different projection numbers; the positions are indicated in (a) by the white line.

Fig. 5
Fig. 5

Validation of the symmetry of the SOP with different noise levels. (a) The SOP of the numerical phantom with a noise variance of 4%. (b) The total error as a function of the variance of the shot noise. (c) Pointwise details of the errors with different noise levels, whose position is indicated in (a) by the white line.

Fig. 6
Fig. 6

Performance of the APs in the reconstructed image of a numerical phantom. (a) Reconstructed image of a central slice of the numerical phantom, free of noise with APs. (b) The intensity profile of (a), in which the position is indicated by the white line in (a). (c) Reconstructed image of the central slice of the numerical phantom, with a noise variance of 2% and APs. (d) Magnified image of (c), in which the position is indicated by the black square in (c).

Fig. 7
Fig. 7

Study of the water phantom. (a) The SOP of the water phantom. (b) Symmetry detection result of the water phantom, the position of which is indicated by the white square in (a). (c) Map of the detected APs, the position of which is indicated by the white square in (a). (d) The intensity profile of the SOP, indicated in (a) by the black line. (e), (f), (g) and (h) are the reconstruction images of the raw data, processing using our method, processing using the averaging filter [18], and wavelet - fourier filter [19], respectively, at the position that is indicated by the white line in (a). The arrows present the location of the artefacts.

Fig. 8
Fig. 8

Study of the euthanised mouse. (a) and (d) The reconstructed image of the thorax before and after correction, respectively. (b) and (c) The magnified image of (a) and (d), respectively. (e) and (h) The reconstructed image of the abdomen before and after correction, respectively. (f) and (g) The magnified image of (e) and (h), respectively.

Fig. 9
Fig. 9

Study of the living mouse. (a) Symmetry detection result of the living mouse. (b) The dyadic wavelet transform modulus of the symmetry detection result. (c) and (d) The intensity profile of the SOP, the position of which is indicated by the black and white line in (a), respectively. (e) and (h) The reconstructed image of the throat before and after correction, the position of which is indicated by the white line in (d), respectively. (f) and (g) The magnified image of (e) and (h), respectively. (i) and (l) The reconstructed image of the thorax before and after correction, the position of which is indicated by the black line in (d), respectively. (j) and (k) The magnified image of (i) and (l), respectively. The arrows present the location of the artefacts.

Fig. 10
Fig. 10

Study of the chicken’s femur. (a) The symmetry detection result of the chicken’s femur. (b) The intensity profile of the SOP, whose position is indicated with the black line in (a). (c) and (g) The reconstructed images of the femur before correction, respectively. (d) and (h), (e) and (i), (f) and (j) are the reconstructed images corrected by our method, averaging filter [18] and wavelet - fourier filter [19], respectively. The arrows indicate the position of the artefacts.

Tables (1)

Tables Icon

Table 1 Parameters of the Numerical Phantom

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

SOP( x ˜ ,d, z ˜ )= R θ [μ(r,θ,z)]d θ
SOP( x ˜ , z ˜ )= R 0 [μ(r,θ θ ,z)] d θ
μ(r,θ,z)= μ( r 0 , θ 0 , z 0 )δ(r r 0 ,θ θ 0 ,z z 0 ) d r 0 d θ 0 d z 0
SOP( x ˜ , z ˜ )= R 0 [ μ( r 0 , θ 0 , z 0 )δ(r r 0 ,θ θ θ 0 ,z z 0 ) d r 0 d θ 0 d z 0 ]d θ
SOP( x ˜ , z ˜ )= R 0 [ μ( r 0 , θ 0 , z 0 )δ(r r 0 ,θ θ θ 0 ,z z 0 ) d r 0 d θ 0 d z 0 d θ ]
SOP( x ˜ , z ˜ )= R 0 [ μ( r 0 , θ 0 , z 0 ) δ(r r 0 ,θ θ θ 0 ,z z 0 )d θ d r 0 d θ 0 d z 0 ]
SOP( x ˜ , z ˜ )= R 0 [ μ( r 0 , θ 0 , z 0 )δ(r r 0 ,z z 0 ) d r 0 d θ 0 d z 0 ]
F(r,z)= μ( r 0 , θ 0 , z 0 )δ(r r 0 ,z z 0 ) d r 0 d θ 0 d z 0
SOP( x ˜ , z ˜ )= R 0 [F(r,z)]
SOP= ( P u (θ)+ P n (θ)+n(θ)) dθ
SOP= 2π N n=0 N1 ( P u ( 2π N n)+ P n ( 2π N n)+n( 2π N n))
SY(i,j)=SOP(i,j)SOP(i,nj+1)
S 2 k+1 (SY)= S 2 k (SY)*[ L k , L k ] W 2 k+1 1 (SY)= S 2 k (SY)*[ G k ,D] W 2 k+1 2 (SY)= S 2 k (SY)*[D, G k ]
W T 2 k+1 (SY)= ( W 2 k+1 1 (SY)) 2 + ( W 2 k+1 2 (SY)) 2
Tw2=(1 1 x/20+4 )×Tw1
SN(i,j)= m,n=1,0,1 SY(i+m,j+n)APs SY(i+m,j+n)
SYN(i,j)=| SY(i,j) 1 8 SN(i,j) |
Ts2=(1 1 x/20+4 )×Ts1
MA(i,j)={ MA(i,j), if j n 2 MA(i,nj+1), if j> n 2
TE= i=1 1100 j=1 550 | SOP(i,j)SOP(i,1101j) |
log 10 (TE)=1.459 log 10 (NP)+6.859
TE=12960NL+917.3

Metrics