Abstract

An optically pumped mid-infrared edge-emitting laser is described, in which a Distributed Bragg Reflector grating partially occupies the surface, and provides spectral narrowing in a high power device. A quasi-continuous-wave power of 3 Watts is obtained at 3.6 µm that is contained within a spectral width of 7 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
    [CrossRef]
  2. S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17(1), 293–303 (2009).
    [CrossRef] [PubMed]
  3. P. Kluczynski, S. Lundqvist, S. Belahsene, and Y. Rouillard, “Tunable-diode-laser spectroscopy of C2H2 using a 3.03 microm GaInAsSb/AlGaInAsSb distributed-feedback laser,” Opt. Lett. 34(24), 3767–3769 (2009).
    [CrossRef] [PubMed]
  4. A. Gassenq, G. Boissier, P. Grech, G. Narcy, A. N. Baranov, and E. Tournie, “InAs/GaSb/InSb short-period super-lattice diode lasers emitting near 3.3 μm at room-temperature,” Electron. Lett. 45(3), 165–167 (2009).
    [CrossRef]
  5. O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45(20), 1028–1030 (2009).
    [CrossRef]
  6. R. Kaspi, A. Ongstad, G. C. Dente, J. Chavez, M. L. Tilton, and D. Gianardi, “High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement,” Appl. Phys. Lett. 81(3), 406–408 (2002).
    [CrossRef]
  7. L. Xue, S. R. J. Brueck, and R. Kaspi, “Widely tunable distributed-feedback lasers with chirped gratings,” Appl. Phys. Lett. 94(16), 161102 (2009).
    [CrossRef]
  8. J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
    [CrossRef]
  9. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, K. Chang, ed. (Wiley, 1995).
  10. J. E. Caroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (IEEE/SPIE Optical Engineering Press, 1998).
  11. H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2003).

2011 (1)

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[CrossRef]

2010 (1)

J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
[CrossRef]

2009 (5)

L. Xue, S. R. J. Brueck, and R. Kaspi, “Widely tunable distributed-feedback lasers with chirped gratings,” Appl. Phys. Lett. 94(16), 161102 (2009).
[CrossRef]

S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17(1), 293–303 (2009).
[CrossRef] [PubMed]

P. Kluczynski, S. Lundqvist, S. Belahsene, and Y. Rouillard, “Tunable-diode-laser spectroscopy of C2H2 using a 3.03 microm GaInAsSb/AlGaInAsSb distributed-feedback laser,” Opt. Lett. 34(24), 3767–3769 (2009).
[CrossRef] [PubMed]

A. Gassenq, G. Boissier, P. Grech, G. Narcy, A. N. Baranov, and E. Tournie, “InAs/GaSb/InSb short-period super-lattice diode lasers emitting near 3.3 μm at room-temperature,” Electron. Lett. 45(3), 165–167 (2009).
[CrossRef]

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45(20), 1028–1030 (2009).
[CrossRef]

2002 (1)

R. Kaspi, A. Ongstad, G. C. Dente, J. Chavez, M. L. Tilton, and D. Gianardi, “High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement,” Appl. Phys. Lett. 81(3), 406–408 (2002).
[CrossRef]

Baranov, A. N.

A. Gassenq, G. Boissier, P. Grech, G. Narcy, A. N. Baranov, and E. Tournie, “InAs/GaSb/InSb short-period super-lattice diode lasers emitting near 3.3 μm at room-temperature,” Electron. Lett. 45(3), 165–167 (2009).
[CrossRef]

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45(20), 1028–1030 (2009).
[CrossRef]

Bauer, A.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[CrossRef]

Belahsene, S.

Boissier, G.

A. Gassenq, G. Boissier, P. Grech, G. Narcy, A. N. Baranov, and E. Tournie, “InAs/GaSb/InSb short-period super-lattice diode lasers emitting near 3.3 μm at room-temperature,” Electron. Lett. 45(3), 165–167 (2009).
[CrossRef]

Brueck, S. R. J.

L. Xue, S. R. J. Brueck, and R. Kaspi, “Widely tunable distributed-feedback lasers with chirped gratings,” Appl. Phys. Lett. 94(16), 161102 (2009).
[CrossRef]

Bugge, F.

J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
[CrossRef]

Cathabard, O.

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45(20), 1028–1030 (2009).
[CrossRef]

Chavez, J.

R. Kaspi, A. Ongstad, G. C. Dente, J. Chavez, M. L. Tilton, and D. Gianardi, “High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement,” Appl. Phys. Lett. 81(3), 406–408 (2002).
[CrossRef]

Crottini, A.

Dente, G. C.

R. Kaspi, A. Ongstad, G. C. Dente, J. Chavez, M. L. Tilton, and D. Gianardi, “High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement,” Appl. Phys. Lett. 81(3), 406–408 (2002).
[CrossRef]

Devenson, J.

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45(20), 1028–1030 (2009).
[CrossRef]

Erbert, G.

J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
[CrossRef]

Faist, J.

Fischer, M.

Forchel, A.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[CrossRef]

Fricke, J.

J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
[CrossRef]

Gassenq, A.

A. Gassenq, G. Boissier, P. Grech, G. Narcy, A. N. Baranov, and E. Tournie, “InAs/GaSb/InSb short-period super-lattice diode lasers emitting near 3.3 μm at room-temperature,” Electron. Lett. 45(3), 165–167 (2009).
[CrossRef]

Gianardi, D.

R. Kaspi, A. Ongstad, G. C. Dente, J. Chavez, M. L. Tilton, and D. Gianardi, “High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement,” Appl. Phys. Lett. 81(3), 406–408 (2002).
[CrossRef]

Ginolas, A.

J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
[CrossRef]

Grech, P.

A. Gassenq, G. Boissier, P. Grech, G. Narcy, A. N. Baranov, and E. Tournie, “InAs/GaSb/InSb short-period super-lattice diode lasers emitting near 3.3 μm at room-temperature,” Electron. Lett. 45(3), 165–167 (2009).
[CrossRef]

Gresch, T.

Herminjard, S.

Herzig, H. P.

Höfling, S.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[CrossRef]

John, W.

J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
[CrossRef]

Kamp, M.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[CrossRef]

Kaspi, R.

L. Xue, S. R. J. Brueck, and R. Kaspi, “Widely tunable distributed-feedback lasers with chirped gratings,” Appl. Phys. Lett. 94(16), 161102 (2009).
[CrossRef]

R. Kaspi, A. Ongstad, G. C. Dente, J. Chavez, M. L. Tilton, and D. Gianardi, “High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement,” Appl. Phys. Lett. 81(3), 406–408 (2002).
[CrossRef]

Klehr, A.

J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
[CrossRef]

Kluczynski, P.

Lehnhardt, T.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[CrossRef]

Lundqvist, S.

Matalla, M.

J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
[CrossRef]

Narcy, G.

A. Gassenq, G. Boissier, P. Grech, G. Narcy, A. N. Baranov, and E. Tournie, “InAs/GaSb/InSb short-period super-lattice diode lasers emitting near 3.3 μm at room-temperature,” Electron. Lett. 45(3), 165–167 (2009).
[CrossRef]

Ongstad, A.

R. Kaspi, A. Ongstad, G. C. Dente, J. Chavez, M. L. Tilton, and D. Gianardi, “High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement,” Appl. Phys. Lett. 81(3), 406–408 (2002).
[CrossRef]

Pellaux, J. P.

Ressel, P.

J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
[CrossRef]

Rößner, K.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[CrossRef]

Rouillard, Y.

Sirigu, L.

Studemann, E.

Teissier, R.

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45(20), 1028–1030 (2009).
[CrossRef]

Tilton, M. L.

R. Kaspi, A. Ongstad, G. C. Dente, J. Chavez, M. L. Tilton, and D. Gianardi, “High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement,” Appl. Phys. Lett. 81(3), 406–408 (2002).
[CrossRef]

Tournie, E.

A. Gassenq, G. Boissier, P. Grech, G. Narcy, A. N. Baranov, and E. Tournie, “InAs/GaSb/InSb short-period super-lattice diode lasers emitting near 3.3 μm at room-temperature,” Electron. Lett. 45(3), 165–167 (2009).
[CrossRef]

Wenzel, H.

J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
[CrossRef]

Worschech, L.

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[CrossRef]

Xue, L.

L. Xue, S. R. J. Brueck, and R. Kaspi, “Widely tunable distributed-feedback lasers with chirped gratings,” Appl. Phys. Lett. 94(16), 161102 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

R. Kaspi, A. Ongstad, G. C. Dente, J. Chavez, M. L. Tilton, and D. Gianardi, “High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement,” Appl. Phys. Lett. 81(3), 406–408 (2002).
[CrossRef]

L. Xue, S. R. J. Brueck, and R. Kaspi, “Widely tunable distributed-feedback lasers with chirped gratings,” Appl. Phys. Lett. 94(16), 161102 (2009).
[CrossRef]

Electron. Lett. (2)

A. Gassenq, G. Boissier, P. Grech, G. Narcy, A. N. Baranov, and E. Tournie, “InAs/GaSb/InSb short-period super-lattice diode lasers emitting near 3.3 μm at room-temperature,” Electron. Lett. 45(3), 165–167 (2009).
[CrossRef]

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45(20), 1028–1030 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Fricke, F. Bugge, A. Ginolas, W. John, A. Klehr, M. Matalla, P. Ressel, H. Wenzel, and G. Erbert, “High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings,” IEEE Photon. Technol. Lett. 22(5), 284–286 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Semicond. Sci. Technol. (1)

A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Mid-infrared semiconductor heterostructure lasers for gas sensing applications,” Semicond. Sci. Technol. 26(1), 014032 (2011).
[CrossRef]

Other (3)

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, K. Chang, ed. (Wiley, 1995).

J. E. Caroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (IEEE/SPIE Optical Engineering Press, 1998).

H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of DBR-OPSL pump geometry.

Fig. 2
Fig. 2

Emission from Device-A collected from front facet (solid line), and back facet (gray). Also shown is emission from a device without the DBR (dashed line).

Fig. 3
Fig. 3

Emission spectra from front facet and back facet of Device-B collected at various temperatures.

Fig. 4
Fig. 4

Output power, and emission spectra collected from the front facet of Device-C. Back facet emission at max power is also shown in gray.

Metrics