Abstract

In this work we report the influence of the crystallization stage of the host matrix on the spectroscopic properties of Nd3+ ions in biocompatible glass-ceramic eutectic rods of composition 0.8CaSiO3-0.2Ca3(PO4)2 doped with 1 and 2 wt% of Nd2O3. The samples were obtained by the laser floating zone technique at different growth rates between 50 and 500 mm/h. The microstructural analysis shows that a growth rate increase or a rod diameter decrease leads the system to a structural arrangement from three (two crystalline and one amorphous) to two phases (one crystalline and one amorphous). Electron backscattering diffraction analysis shows the presence of Ca2SiO4 and apatite-like crystalline phases. Site-selective laser spectroscopy in the 4I9/24F3/2/4F5/2 transitions confirms that Nd3+ ions are incorporated in crystalline and amorphous phases in these glass-ceramic samples. In particular, the presence of Ca2SiO4 crystalline phase in the samples grown at low rates, which has an excellent in vitro bioactivity, can be unambiguously identified from the excitation spectra and lifetime measurements of the 4F3/2 state of Nd3+ ions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006) (and references therein).
    [CrossRef]
  2. R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B 56(17), 10907–10915 (1997).
    [CrossRef]
  3. R. Balda, S. Garcia-Revilla, J. Fernández, R. I. Merino, J. I. Peña, and V. M. Orera, “Near infrared to visible upconversion of Er3+ in CaZrO3/CaSZ eutectic crystals with ordered lamellar microstructure,” J. Lumin. 129(12), 1422–1427 (2009).
    [CrossRef]
  4. P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc. 78(6), 1653–1656 (1995).
    [CrossRef]
  5. P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials 18(19), 1285–1291 (1997).
    [CrossRef] [PubMed]
  6. P. N. De Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater. 46(7), 2541–2549 (1998).
    [CrossRef]
  7. M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater. 5(8), 3057–3066 (2009).
    [CrossRef] [PubMed]
  8. M. Magallanes-Perdomo, Z. B. Luklinska, A. H. De Aza, R. G. Carrodeguas, S. De Aza, and P. Pena, “Bone-like forming ability of apatite-wollastonite glass ceramic,” J. Eur. Ceram. Soc. 31(9), 1549–1561 (2011).
    [CrossRef]
  9. C. Wang, Y. Xue, K. Lin, J. Lu, J. Chang, and J. Sun, “The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics,” Acta Biomater. 8(1), 350–360 (2012).
    [PubMed]
  10. J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
    [CrossRef]
  11. R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
    [CrossRef] [PubMed]
  12. R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater. 31(9), 1319–1322 (2009).
    [CrossRef]
  13. M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
    [CrossRef]
  14. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
    [CrossRef]
  15. Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc. 25(9), 1507–1514 (2005).
    [CrossRef]
  16. D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
    [CrossRef]
  17. F. J. Ester, D. Sola, and J. I. Peña, “Efectos térmicos inducidos durante el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio 47, 352–357 (2008).
    [CrossRef]
  18. F. J. Ester and J. I. Peña, “Análisis de la zona fundida en el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio 46, 240–246 (2007).
    [CrossRef]
  19. B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, and M. Bass, “Comparison of Laser Performance of Nd-Doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F and Sr5(VO4)3F,” in Advanced Solid-State Lasers, Vol. 20 of 1994 OSA Proceedings Series (Optical Society of America, 1994), pp. 41–52.

2012 (1)

C. Wang, Y. Xue, K. Lin, J. Lu, J. Chang, and J. Sun, “The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics,” Acta Biomater. 8(1), 350–360 (2012).
[PubMed]

2011 (2)

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[CrossRef]

M. Magallanes-Perdomo, Z. B. Luklinska, A. H. De Aza, R. G. Carrodeguas, S. De Aza, and P. Pena, “Bone-like forming ability of apatite-wollastonite glass ceramic,” J. Eur. Ceram. Soc. 31(9), 1549–1561 (2011).
[CrossRef]

2009 (4)

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater. 5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

R. Balda, S. Garcia-Revilla, J. Fernández, R. I. Merino, J. I. Peña, and V. M. Orera, “Near infrared to visible upconversion of Er3+ in CaZrO3/CaSZ eutectic crystals with ordered lamellar microstructure,” J. Lumin. 129(12), 1422–1427 (2009).
[CrossRef]

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater. 31(9), 1319–1322 (2009).
[CrossRef]

2008 (1)

F. J. Ester, D. Sola, and J. I. Peña, “Efectos térmicos inducidos durante el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio 47, 352–357 (2008).
[CrossRef]

2007 (1)

F. J. Ester and J. I. Peña, “Análisis de la zona fundida en el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio 46, 240–246 (2007).
[CrossRef]

2006 (1)

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006) (and references therein).
[CrossRef]

2005 (1)

Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc. 25(9), 1507–1514 (2005).
[CrossRef]

2002 (1)

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

1998 (1)

P. N. De Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater. 46(7), 2541–2549 (1998).
[CrossRef]

1997 (2)

P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials 18(19), 1285–1291 (1997).
[CrossRef] [PubMed]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B 56(17), 10907–10915 (1997).
[CrossRef]

1995 (1)

P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc. 78(6), 1653–1656 (1995).
[CrossRef]

1990 (1)

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[CrossRef]

1976 (1)

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

Azkargorta, J.

Balda, R.

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater. 31(9), 1319–1322 (2009).
[CrossRef]

R. Balda, S. Garcia-Revilla, J. Fernández, R. I. Merino, J. I. Peña, and V. M. Orera, “Near infrared to visible upconversion of Er3+ in CaZrO3/CaSZ eutectic crystals with ordered lamellar microstructure,” J. Lumin. 129(12), 1422–1427 (2009).
[CrossRef]

Carrodeguas, R. G.

M. Magallanes-Perdomo, Z. B. Luklinska, A. H. De Aza, R. G. Carrodeguas, S. De Aza, and P. Pena, “Bone-like forming ability of apatite-wollastonite glass ceramic,” J. Eur. Ceram. Soc. 31(9), 1549–1561 (2011).
[CrossRef]

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater. 5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

Cases, R.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

Chang, J.

C. Wang, Y. Xue, K. Lin, J. Lu, J. Chang, and J. Sun, “The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics,” Acta Biomater. 8(1), 350–360 (2012).
[PubMed]

Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc. 25(9), 1507–1514 (2005).
[CrossRef]

De Aza, A. H.

M. Magallanes-Perdomo, Z. B. Luklinska, A. H. De Aza, R. G. Carrodeguas, S. De Aza, and P. Pena, “Bone-like forming ability of apatite-wollastonite glass ceramic,” J. Eur. Ceram. Soc. 31(9), 1549–1561 (2011).
[CrossRef]

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater. 5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

De Aza, P. N.

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater. 5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

P. N. De Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater. 46(7), 2541–2549 (1998).
[CrossRef]

P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials 18(19), 1285–1291 (1997).
[CrossRef] [PubMed]

P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc. 78(6), 1653–1656 (1995).
[CrossRef]

De Aza, S.

M. Magallanes-Perdomo, Z. B. Luklinska, A. H. De Aza, R. G. Carrodeguas, S. De Aza, and P. Pena, “Bone-like forming ability of apatite-wollastonite glass ceramic,” J. Eur. Ceram. Soc. 31(9), 1549–1561 (2011).
[CrossRef]

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater. 5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

P. N. De Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater. 46(7), 2541–2549 (1998).
[CrossRef]

P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials 18(19), 1285–1291 (1997).
[CrossRef] [PubMed]

P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc. 78(6), 1653–1656 (1995).
[CrossRef]

de la Fuente, G. F.

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B 56(17), 10907–10915 (1997).
[CrossRef]

Ester, F. J.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[CrossRef]

F. J. Ester, D. Sola, and J. I. Peña, “Efectos térmicos inducidos durante el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio 47, 352–357 (2008).
[CrossRef]

F. J. Ester and J. I. Peña, “Análisis de la zona fundida en el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio 46, 240–246 (2007).
[CrossRef]

Fernández, J.

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater. 31(9), 1319–1322 (2009).
[CrossRef]

R. Balda, S. Garcia-Revilla, J. Fernández, R. I. Merino, J. I. Peña, and V. M. Orera, “Near infrared to visible upconversion of Er3+ in CaZrO3/CaSZ eutectic crystals with ordered lamellar microstructure,” J. Lumin. 129(12), 1422–1427 (2009).
[CrossRef]

Garcia-Revilla, S.

R. Balda, S. Garcia-Revilla, J. Fernández, R. I. Merino, J. I. Peña, and V. M. Orera, “Near infrared to visible upconversion of Er3+ in CaZrO3/CaSZ eutectic crystals with ordered lamellar microstructure,” J. Lumin. 129(12), 1422–1427 (2009).
[CrossRef]

García-Revilla, S.

Gou, Z.

Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc. 25(9), 1507–1514 (2005).
[CrossRef]

Guitian, F.

P. N. De Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater. 46(7), 2541–2549 (1998).
[CrossRef]

P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc. 78(6), 1653–1656 (1995).
[CrossRef]

Guitián, F.

P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials 18(19), 1285–1291 (1997).
[CrossRef] [PubMed]

Iparraguirre, I.

Jacobs, R. R.

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

Larrea, A.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B 56(17), 10907–10915 (1997).
[CrossRef]

Lin, K.

C. Wang, Y. Xue, K. Lin, J. Lu, J. Chang, and J. Sun, “The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics,” Acta Biomater. 8(1), 350–360 (2012).
[PubMed]

Llorca, J.

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006) (and references therein).
[CrossRef]

Lu, J.

C. Wang, Y. Xue, K. Lin, J. Lu, J. Chang, and J. Sun, “The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics,” Acta Biomater. 8(1), 350–360 (2012).
[PubMed]

Luklinska, Z. B.

M. Magallanes-Perdomo, Z. B. Luklinska, A. H. De Aza, R. G. Carrodeguas, S. De Aza, and P. Pena, “Bone-like forming ability of apatite-wollastonite glass ceramic,” J. Eur. Ceram. Soc. 31(9), 1549–1561 (2011).
[CrossRef]

Magallanes-Perdomo, M.

M. Magallanes-Perdomo, Z. B. Luklinska, A. H. De Aza, R. G. Carrodeguas, S. De Aza, and P. Pena, “Bone-like forming ability of apatite-wollastonite glass ceramic,” J. Eur. Ceram. Soc. 31(9), 1549–1561 (2011).
[CrossRef]

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater. 5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

Merino, R. I.

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater. 31(9), 1319–1322 (2009).
[CrossRef]

R. Balda, S. Garcia-Revilla, J. Fernández, R. I. Merino, J. I. Peña, and V. M. Orera, “Near infrared to visible upconversion of Er3+ in CaZrO3/CaSZ eutectic crystals with ordered lamellar microstructure,” J. Lumin. 129(12), 1422–1427 (2009).
[CrossRef]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B 56(17), 10907–10915 (1997).
[CrossRef]

Oliete, P. B.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[CrossRef]

Orera, V. M.

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater. 31(9), 1319–1322 (2009).
[CrossRef]

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

R. Balda, S. Garcia-Revilla, J. Fernández, R. I. Merino, J. I. Peña, and V. M. Orera, “Near infrared to visible upconversion of Er3+ in CaZrO3/CaSZ eutectic crystals with ordered lamellar microstructure,” J. Lumin. 129(12), 1422–1427 (2009).
[CrossRef]

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006) (and references therein).
[CrossRef]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B 56(17), 10907–10915 (1997).
[CrossRef]

Pardo, J. A.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B 56(17), 10907–10915 (1997).
[CrossRef]

Pena, P.

M. Magallanes-Perdomo, Z. B. Luklinska, A. H. De Aza, R. G. Carrodeguas, S. De Aza, and P. Pena, “Bone-like forming ability of apatite-wollastonite glass ceramic,” J. Eur. Ceram. Soc. 31(9), 1549–1561 (2011).
[CrossRef]

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater. 5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

Peña, J. I.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[CrossRef]

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater. 31(9), 1319–1322 (2009).
[CrossRef]

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

R. Balda, S. Garcia-Revilla, J. Fernández, R. I. Merino, J. I. Peña, and V. M. Orera, “Near infrared to visible upconversion of Er3+ in CaZrO3/CaSZ eutectic crystals with ordered lamellar microstructure,” J. Lumin. 129(12), 1422–1427 (2009).
[CrossRef]

F. J. Ester, D. Sola, and J. I. Peña, “Efectos térmicos inducidos durante el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio 47, 352–357 (2008).
[CrossRef]

F. J. Ester and J. I. Peña, “Análisis de la zona fundida en el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio 46, 240–246 (2007).
[CrossRef]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B 56(17), 10907–10915 (1997).
[CrossRef]

Rodríguez, M. A.

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater. 5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

Sola, D.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[CrossRef]

F. J. Ester, D. Sola, and J. I. Peña, “Efectos térmicos inducidos durante el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio 47, 352–357 (2008).
[CrossRef]

Sun, J.

C. Wang, Y. Xue, K. Lin, J. Lu, J. Chang, and J. Sun, “The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics,” Acta Biomater. 8(1), 350–360 (2012).
[PubMed]

Turrillas, X.

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater. 5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

Wang, C.

C. Wang, Y. Xue, K. Lin, J. Lu, J. Chang, and J. Sun, “The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics,” Acta Biomater. 8(1), 350–360 (2012).
[PubMed]

Weber, M. J.

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[CrossRef]

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

Xue, Y.

C. Wang, Y. Xue, K. Lin, J. Lu, J. Chang, and J. Sun, “The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics,” Acta Biomater. 8(1), 350–360 (2012).
[PubMed]

Zhai, W.

Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc. 25(9), 1507–1514 (2005).
[CrossRef]

Acta Biomater. (2)

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater. 5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

C. Wang, Y. Xue, K. Lin, J. Lu, J. Chang, and J. Sun, “The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics,” Acta Biomater. 8(1), 350–360 (2012).
[PubMed]

Acta Mater. (1)

P. N. De Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater. 46(7), 2541–2549 (1998).
[CrossRef]

Biomaterials (1)

P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials 18(19), 1285–1291 (1997).
[CrossRef] [PubMed]

Bol. Soc. Esp. Ceram. Vidrio (2)

F. J. Ester, D. Sola, and J. I. Peña, “Efectos térmicos inducidos durante el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio 47, 352–357 (2008).
[CrossRef]

F. J. Ester and J. I. Peña, “Análisis de la zona fundida en el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio 46, 240–246 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

J. Am. Ceram. Soc. (1)

P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc. 78(6), 1653–1656 (1995).
[CrossRef]

J. Eur. Ceram. Soc. (3)

M. Magallanes-Perdomo, Z. B. Luklinska, A. H. De Aza, R. G. Carrodeguas, S. De Aza, and P. Pena, “Bone-like forming ability of apatite-wollastonite glass ceramic,” J. Eur. Ceram. Soc. 31(9), 1549–1561 (2011).
[CrossRef]

Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc. 25(9), 1507–1514 (2005).
[CrossRef]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[CrossRef]

J. Lumin. (1)

R. Balda, S. Garcia-Revilla, J. Fernández, R. I. Merino, J. I. Peña, and V. M. Orera, “Near infrared to visible upconversion of Er3+ in CaZrO3/CaSZ eutectic crystals with ordered lamellar microstructure,” J. Lumin. 129(12), 1422–1427 (2009).
[CrossRef]

J. Non-Cryst. Solids (2)

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater. 31(9), 1319–1322 (2009).
[CrossRef]

Phys. Rev. B (1)

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B 56(17), 10907–10915 (1997).
[CrossRef]

Prog. Mater. Sci. (1)

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006) (and references therein).
[CrossRef]

Other (1)

B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, and M. Bass, “Comparison of Laser Performance of Nd-Doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F and Sr5(VO4)3F,” in Advanced Solid-State Lasers, Vol. 20 of 1994 OSA Proceedings Series (Optical Society of America, 1994), pp. 41–52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross-section (a) and longitudinal-section (b) of a sample grown at 100 mm/h with a diameter of 2.5 mm and doped with 1 wt% of Nd2O3. Longitudinal-section micrographs of samples doped with 1 wt% of Nd2O3 with a diameter of 2.5 mm and grown at 50 mm/h (c) and 500 mm/h (d) and samples doped with 2 wt% of Nd2O3 grown at 100 mm/h with diameters 2.45 mm (e), and 4.5 mm (f). The inset in micrographs (c)-(f) shows the details of the microstructure in a cross-section view.

Fig. 2
Fig. 2

Cross-section micrograph of a sample grown at 50 mm/h doped with 1 wt% of Nd2O3. The insets show the electron backscatter diffraction patterns corresponding to an oxyapatite structure, (1), and to the dicalcium silicate, (2).

Fig. 3
Fig. 3

Excitation spectra of the 4I9/24F5/2,3/2 transitions obtained by collecting the luminescence at 1066 nm in the glass and glass-ceramic samples obtained at different growth rates and doped with 1 wt% of Nd2O3.

Fig. 4
Fig. 4

Excitation spectra obtained at different emission wavelengths for the glass-ceramic samples grown at 50 mm/h (a) and 500 mm/h (b) and for the glass sample (c).

Fig. 5
Fig. 5

Steady-state emission spectra of the 4F3/24I11/2 transition obtained under excitation at 802.2 nm (a) and 810.8 nm (b) for the glass-ceramic samples grown at 50 mm/h and 500 mm/h and for the glass sample.

Fig. 6
Fig. 6

Experimental decays of the 4F3/2 level obtained under excitation at 802.2 nm at three emission wavelengths for the sample grown at 50 mm/h.

Tables (2)

Tables Icon

Table 1 Compositional analysis of the W-TCP eutectic glass-ceramics in wt% together with the growth rate (V) and diameter (D). The nominal composition is 1% Nd2O3 for samples 1-4 and 2% Nd2O3 for samples 5 and 6.

Tables Icon

Table 2 Compositional analysis in wt% of the phases present in the eutectic glass-ceramic samples grown at 50 mm/h and 500 mm/h and doped with 1wt% of Nd2O3

Metrics