Abstract

We use an asymmetric 2 m draw-tower photonic crystal fiber taper to demonstrate that the taper profile needs careful optimisation if you want to develop a supercontinuum light source with as much power as possible in the blue edge of the spectrum. In particular we show, that for a given taper length, the downtapering should be as long as possible. We argue how this may be explained by the concept of group-acceleration mismatch (GAM) and we confirm the results using conventional symmetrical short tapers made on a taper station, which have varying downtapering lengths.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
    [CrossRef]
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  3. P. Russel, “Photonic crystal fiber,” Science 299, 358–362 (2003).
    [CrossRef]
  4. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  5. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  6. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
    [CrossRef] [PubMed]
  7. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  8. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [CrossRef] [PubMed]
  9. A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007).
    [CrossRef]
  10. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
    [CrossRef]
  11. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B 6, 1149–1158 (1989).
    [CrossRef]
  12. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
    [CrossRef] [PubMed]
  13. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
    [CrossRef] [PubMed]
  14. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
    [CrossRef] [PubMed]
  15. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
    [CrossRef] [PubMed]
  16. O. Bang and M. Peyrard, “Generation of high-energy localized vibrational modes in nonlinear klein-gordon lattices,” Phys. Rev. E 53, 4143–4152 (1996).
    [CrossRef]
  17. N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “Could rogue waves be used as efficient weapons against enemy ships?” Eur. Phys. J. Special Topics 185, 259–266 (2010).
    [CrossRef]
  18. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Elect. 23, 1938–1946 (1987).
    [CrossRef]
  19. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniformphotonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
    [CrossRef] [PubMed]
  20. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
    [CrossRef] [PubMed]
  21. S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum—group-acceleration matching,” Opt. Lett. 36, 816–818 (2011).
    [CrossRef] [PubMed]
  22. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
    [CrossRef] [PubMed]
  23. T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005).
    [CrossRef] [PubMed]
  24. S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
    [CrossRef] [PubMed]
  25. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2010).
    [CrossRef]
  26. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  27. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in zblan fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
    [CrossRef]
  28. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  29. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
    [CrossRef] [PubMed]
  30. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30, 1566–1568 (2005).
    [CrossRef] [PubMed]
  31. P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
    [CrossRef] [PubMed]
  32. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
    [CrossRef] [PubMed]
  33. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007).
    [CrossRef] [PubMed]
  34. A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett. 33, 2407–2409 (2008).
    [CrossRef] [PubMed]
  35. A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010).
    [CrossRef] [PubMed]
  36. J. Cascante-Vindas, A. Díez, J. L. Cruz, and M. Andrés, “White light supercontinuum generation in a y-shaped microstructured tapered fiber pumped at 1064 nm,” Opt. Express 18, 14535–14540 (2010).
    [CrossRef] [PubMed]
  37. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).
    [CrossRef] [PubMed]
  38. S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep uv,” Opt. Lett. 37, 770–772 (2012).
    [CrossRef] [PubMed]
  39. N. Vukovic, N. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
    [CrossRef]
  40. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett. 33, 621–623 (2008).
    [CrossRef] [PubMed]
  41. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739–1741 (2004).
    [CrossRef] [PubMed]

2012 (3)

2011 (1)

2010 (5)

2009 (2)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[CrossRef]

J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
[CrossRef] [PubMed]

2008 (6)

2007 (4)

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef] [PubMed]

A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

2006 (4)

2005 (3)

2004 (2)

2003 (3)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

P. Russel, “Photonic crystal fiber,” Science 299, 358–362 (2003).
[CrossRef]

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

2002 (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

2001 (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

2000 (1)

1997 (1)

1996 (2)

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

O. Bang and M. Peyrard, “Generation of high-energy localized vibrational modes in nonlinear klein-gordon lattices,” Phys. Rev. E 53, 4143–4152 (1996).
[CrossRef]

1989 (1)

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Elect. 23, 1938–1946 (1987).
[CrossRef]

Agger, C.

Akhmediev, N.

N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “Could rogue waves be used as efficient weapons against enemy ships?” Eur. Phys. J. Special Topics 185, 259–266 (2010).
[CrossRef]

Andersen, P. E.

Andersen, T.

Andrés, M.

Ankiewicz, A.

N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “Could rogue waves be used as efficient weapons against enemy ships?” Eur. Phys. J. Special Topics 185, 259–266 (2010).
[CrossRef]

Atkin, D. M.

Audry, L.

Bang, O.

Bar-Joseph, I.

Barviau, B.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Elect. 23, 1938–1946 (1987).
[CrossRef]

Birks, T.

Birks, T. A.

Bjarklev, A.

Bjarklev, A. O.

Brambilla, G.

N. Vukovic, N. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
[CrossRef]

Broderick, N.

N. Vukovic, N. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
[CrossRef]

Broeng, J.

Cascante-Vindas, J.

Chemla, D. S.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Cruz, J. L.

Cumberland, B. A.

Deng, Y.

Díez, A.

Duan, Z.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[CrossRef]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Dupont, S.

Eggleton, B. J.

Falk, P.

Frosz, M.

Frosz, M. H.

Gao, W.

Genty, G.

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

George, A. K.

Giessen, H.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[CrossRef] [PubMed]

Gordon, J. P.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Hansen, K. P.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Elect. 23, 1938–1946 (1987).
[CrossRef]

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Islam, M. N.

Jalali, B.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef] [PubMed]

Judge, A.

Keiding, S. R.

Knight, J. C.

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniformphotonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
[CrossRef] [PubMed]

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Knox, W. H.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef] [PubMed]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Koshiba, M.

Kudlinski, A.

Lelek, M.

Leon-Saval, S.

Liao, M.

Limpert, J.

Lu, F.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Lyngsø, J. K.

Mason, M.

Mussot, A.

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Ohishi, Y.

Petersen, C.

Petrovich, M.

N. Vukovic, N. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
[CrossRef]

Peyrard, M.

O. Bang and M. Peyrard, “Generation of high-energy localized vibrational modes in nonlinear klein-gordon lattices,” Phys. Rev. E 53, 4143–4152 (1996).
[CrossRef]

Popov, S. V.

Pricking, S.

Ropers, C.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef] [PubMed]

Rulkov, A. B.

Russel, P.

P. Russel, “Photonic crystal fiber,” Science 299, 358–362 (2003).
[CrossRef]

Russell, P. S.

Russell, P. S. J.

Saitoh, K.

Schimpf, D.

Schreiber, T.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Solli, D. R.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef] [PubMed]

Sørensen, S. T.

Soto-Crespo, J. M.

N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “Could rogue waves be used as efficient weapons against enemy ships?” Eur. Phys. J. Special Topics 185, 259–266 (2010).
[CrossRef]

Stark, S. P.

Steffensen, H.

Stone, J. M.

Sucha, G.

Suzuki, T.

Taylor, J. R.

Thøgersen, J.

Thomsen, C. L.

Thrane, L.

Travers, J. C.

Tünnermann, A.

Vukovic, N.

N. Vukovic, N. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
[CrossRef]

Wadsworth, W.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Elect. 23, 1938–1946 (1987).
[CrossRef]

Wegener, M.

Yan, X.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Elect. 23, 1938–1946 (1987).
[CrossRef]

Eur. Phys. J. Special Topics (1)

N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “Could rogue waves be used as efficient weapons against enemy ships?” Eur. Phys. J. Special Topics 185, 259–266 (2010).
[CrossRef]

IEEE J. Quantum Elect. (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Elect. 23, 1938–1946 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Vukovic, N. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008).
[CrossRef]

J. Opt. (1)

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

Nature (2)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef] [PubMed]

Opt. Express (13)

P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
[CrossRef] [PubMed]

T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[CrossRef] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[CrossRef] [PubMed]

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007).
[CrossRef] [PubMed]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniformphotonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
[CrossRef] [PubMed]

J. Cascante-Vindas, A. Díez, J. L. Cruz, and M. Andrés, “White light supercontinuum generation in a y-shaped microstructured tapered fiber pumped at 1064 nm,” Opt. Express 18, 14535–14540 (2010).
[CrossRef] [PubMed]

A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010).
[CrossRef] [PubMed]

S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
[CrossRef] [PubMed]

S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef] [PubMed]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).
[CrossRef] [PubMed]

Opt. Lett. (10)

S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep uv,” Opt. Lett. 37, 770–772 (2012).
[CrossRef] [PubMed]

M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739–1741 (2004).
[CrossRef] [PubMed]

F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30, 1566–1568 (2005).
[CrossRef] [PubMed]

S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum—group-acceleration matching,” Opt. Lett. 36, 816–818 (2011).
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett. 33, 621–623 (2008).
[CrossRef] [PubMed]

A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett. 33, 2407–2409 (2008).
[CrossRef] [PubMed]

J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

Phys. Rev. A (1)

A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007).
[CrossRef]

Phys. Rev. E (1)

O. Bang and M. Peyrard, “Generation of high-energy localized vibrational modes in nonlinear klein-gordon lattices,” Phys. Rev. E 53, 4143–4152 (1996).
[CrossRef]

Phys. Rev. Lett. (3)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Science (2)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

P. Russel, “Photonic crystal fiber,” Science 299, 358–362 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Radiation trapping and leakage. (a) In a uniform fiber a soliton can trap and blueshift a GV matched DW, while it is slowly redshifting and thus decelerating. The trapping is incomplete, i.e. part of the DW continuously leaks out of the trap, as illustrated. (b) In a taper, there is an asymmetric change in GV of the soliton and trapped DW. That is, there is a mismatch in the group-acceleration, the rate with which the GV changes, which increases the amount of light that leaks out of the trap (not illustrated). In the figure it is assumed that the dispersion increases for the soliton both when it is redshifted and when the fiber is tapered.

Fig. 2
Fig. 2

(a) Spectral evolution of a 20 fs fundamental soliton and trapped wave through a fiber taper with an initial 1 m uniform fiber. (b)–(c) Spectrograms at the entrance (1 m) of the taper and at the taper waist (2 m). The wave is fully trapped at the taper entrance, but the taper increases the soliton redshift and deceleration, which causes light to leak from the soliton induced trapping region.

Fig. 3
Fig. 3

(a) Dispersion and (b) GV for the draw-tower taper for the uniform fiber (solid line) and at the taper waist (dashed line). The shaded areas mark the loss region above 2300 nm where the soliton redshift halts, and the horizontal lines in (b) show the GV matching of the expected red edge to the blue edge for the uniform fiber and taper. (c) Blue edge (blue line), red edge (red line) and ZDWs (dashed lines) as a function of wavelength and pitch defined as described in the text. The horizontal lines are as in (b) and confirm that the shortest possible wavelength is reached in the taper. (d)–(f) show the same for the ultra-short tapers.

Fig. 4
Fig. 4

Optimum pitch and corresponding minimum wavelength of the blue edge as a function of the fiber’s hole-to-pitch ratio, calculated as described in the text by GV matching to the loss edge at 2300 nm or 50 nm below the second ZDW. For higher hole-to-pitch ratios the minimum wavelength is generally found for a pitch around 1.8 μm.

Fig. 5
Fig. 5

Measured profile of the asymmetric draw-tower taper. (a) Schematic with cross-section images captured with an optical microscope at 100x magnification. The structure was maintained throughout the length of the taper. (b) Coating diameter and fiber pitch (hole spacing) calculated from cross-section images through the tapered section. The hole-to-pitch ratio of 0.52 was constant though the taper.

Fig. 6
Fig. 6

Experimental output spectra of the asymmetric draw-tower taper. (a) Output spectra when pumping the taper from the long (blue) and short (red) downtapering sides. The spectrum of a 10 m uniform fiber (black dash) is shown for comparison. The insets show the pump directions. (b) Close up of the blue edge marked in (a), the vertical dotted lines mark the spectral edges calculated in Fig. 3(b). (c) Integrated power in the blue edge. Pumping from the long downtapering side clearly gives a higher power in the blue edge.

Fig. 7
Fig. 7

Experimental spectra from ultra-short symmetrical tapers with increasing transition lengths: The blue, green and red lines show the spectra from tapers with increasing lengths of the downtapering section. The black dashed line shows the spectrum at the entrance of the tapers. A longer downtapering section again clearly increases the power in the blue edge.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λred=min{λloss,λZDW,250nm}.

Metrics