Abstract

We report on the instantaneous detection of the ablation rate as a function of depth during ultrafast microdrilling of metal targets. The displacement of the ablation front has been measured with a sub-wavelength resolution using an all-optical sensor based on the laser diode self-mixing interferometry. The time dependence of the laser ablation process within the depth of aluminum and stainless steel targets has been investigated to study the evolution of the material removal rate in high aspect-ratio micromachined holes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner and H. Lubatschowski, eds. (Springer, Berlin, 2004) Chap. 7,11.
  2. C. Dorman and M. Schulze, “Picosecond micromachining update,” Laser Technik J. 5(4), 44–47 (2008).
    [CrossRef]
  3. J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74(22), 224106 (2006).
    [CrossRef]
  4. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiatiuon,” Phys. Rev. B 73(13), 134108 (2006).
    [CrossRef]
  5. S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
    [CrossRef]
  6. E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71(17), 174405 (2005).
    [CrossRef]
  7. M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” JLMN-Journal of Laser Micro/Nanoengineering 3(3), 129–134 (2008).
  8. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
    [CrossRef] [PubMed]
  9. P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
    [CrossRef]
  10. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
    [CrossRef] [PubMed]
  11. T. V. Kononenko, V. Konov, S. Garnov, S. Klimentov, and F. Dausinger, “Dynamics of deep short pulse laser drilling: ablative stages and light propagation,” Laser Phys. 11, 343–351 (2001).
  12. A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
    [CrossRef]
  13. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
    [CrossRef]
  14. S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395–20400 (2010).
    [CrossRef] [PubMed]
  15. P. J. L. Webster, J. X. Z. Yu, B. Y. C. Leung, M. D. Anderson, V. X. D. Yang, and J. M. Fraser, “In situ 24 kHz coherent imaging of morphology change in laser percussion drilling,” Opt. Lett. 35(5), 646–648 (2010).
    [CrossRef] [PubMed]
  16. C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: a two stage process,” J. Appl. Phys. 99(9), 093101 (2006).
    [CrossRef]
  17. F. P. Mezzapesa, A. Ancona, T. Sibillano, F. De Lucia, M. Dabbicco, P. M. Lugarà, and G. Scamarcio, “High-resolution monitoring of the hole depth during ultrafast laser ablation drilling by diode-laser self-mixing interferometry,” Opt. Lett. 36(6), 822–824 (2011).
    [CrossRef] [PubMed]
  18. F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
    [CrossRef] [PubMed]
  19. F. De Lucia, M. Putignano, S. Ottonelli, M. di Vietro, M. Dabbicco, and G. Scamarcio, “Laser-self-mixing interferometry in the Gaussian beam approximation: experiments and theory,” Opt. Express 18(10), 10323–10333 (2010).
    [CrossRef] [PubMed]
  20. S. Ottonelli, M. Dabbicco, F. De Lucia, and G. Scamarcio, “Simultaneous measurement of linear and transverse displacements by laser self-mixing,” Appl. Opt. 48(9), 1784–1789 (2009).
    [CrossRef] [PubMed]
  21. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [CrossRef] [PubMed]
  22. A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys., A Mater. Sci. Process. 76(3), 373–378 (2003).
    [CrossRef]
  23. A. Ruf, P. Berger, F. Dausinger, and H. Hugel, “Analytical investigations on geometrical influences on laser drilling,” J. Phys. D Appl. Phys. 34(18), 2918–2925 (2001).
    [CrossRef]

2011 (2)

2010 (4)

2009 (2)

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[CrossRef]

S. Ottonelli, M. Dabbicco, F. De Lucia, and G. Scamarcio, “Simultaneous measurement of linear and transverse displacements by laser self-mixing,” Appl. Opt. 48(9), 1784–1789 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” JLMN-Journal of Laser Micro/Nanoengineering 3(3), 129–134 (2008).

C. Dorman and M. Schulze, “Picosecond micromachining update,” Laser Technik J. 5(4), 44–47 (2008).
[CrossRef]

2006 (3)

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74(22), 224106 (2006).
[CrossRef]

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiatiuon,” Phys. Rev. B 73(13), 134108 (2006).
[CrossRef]

C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: a two stage process,” J. Appl. Phys. 99(9), 093101 (2006).
[CrossRef]

2005 (2)

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[CrossRef]

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71(17), 174405 (2005).
[CrossRef]

2004 (1)

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

2003 (2)

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys., A Mater. Sci. Process. 76(3), 373–378 (2003).
[CrossRef]

2001 (2)

A. Ruf, P. Berger, F. Dausinger, and H. Hugel, “Analytical investigations on geometrical influences on laser drilling,” J. Phys. D Appl. Phys. 34(18), 2918–2925 (2001).
[CrossRef]

T. V. Kononenko, V. Konov, S. Garnov, S. Klimentov, and F. Dausinger, “Dynamics of deep short pulse laser drilling: ablative stages and light propagation,” Laser Phys. 11, 343–351 (2001).

1982 (1)

Ahmed, M. A.

Ancona, A.

Anderson, M. D.

Audouard, E.

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74(22), 224106 (2006).
[CrossRef]

Axente, E.

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[CrossRef]

Balling, P.

C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: a two stage process,” J. Appl. Phys. 99(9), 093101 (2006).
[CrossRef]

Berger, P.

A. Ruf, P. Berger, F. Dausinger, and H. Hugel, “Analytical investigations on geometrical influences on laser drilling,” J. Phys. D Appl. Phys. 34(18), 2918–2925 (2001).
[CrossRef]

Brambilla, M.

Bruneau, S.

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[CrossRef]

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Collmer, S.

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” JLMN-Journal of Laser Micro/Nanoengineering 3(3), 129–134 (2008).

Colombier, J. P.

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74(22), 224106 (2006).
[CrossRef]

Columbo, L.

Combis, P.

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74(22), 224106 (2006).
[CrossRef]

Coyne, E.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

Dabbicco, M.

Dausinger, F.

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” JLMN-Journal of Laser Micro/Nanoengineering 3(3), 129–134 (2008).

T. V. Kononenko, V. Konov, S. Garnov, S. Klimentov, and F. Dausinger, “Dynamics of deep short pulse laser drilling: ablative stages and light propagation,” Laser Phys. 11, 343–351 (2001).

A. Ruf, P. Berger, F. Dausinger, and H. Hugel, “Analytical investigations on geometrical influences on laser drilling,” J. Phys. D Appl. Phys. 34(18), 2918–2925 (2001).
[CrossRef]

De Lucia, F.

di Vietro, M.

Döring, S.

Dorman, C.

C. Dorman and M. Schulze, “Picosecond micromachining update,” Laser Technik J. 5(4), 44–47 (2008).
[CrossRef]

Duering, M.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71(17), 174405 (2005).
[CrossRef]

Dumitru, G.

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[CrossRef]

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Fraser, J. M.

Gamaly, E. G.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71(17), 174405 (2005).
[CrossRef]

Garnov, S.

T. V. Kononenko, V. Konov, S. Garnov, S. Klimentov, and F. Dausinger, “Dynamics of deep short pulse laser drilling: ablative stages and light propagation,” Laser Phys. 11, 343–351 (2001).

Gerbig, Y.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Glynn, T. J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

Graf, T.

Haefke, H.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Hermann, J.

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[CrossRef]

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Hertel, I. V.

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74(22), 224106 (2006).
[CrossRef]

Hugel, H.

A. Ruf, P. Berger, F. Dausinger, and H. Hugel, “Analytical investigations on geometrical influences on laser drilling,” J. Phys. D Appl. Phys. 34(18), 2918–2925 (2001).
[CrossRef]

Klimentov, S.

T. V. Kononenko, V. Konov, S. Garnov, S. Klimentov, and F. Dausinger, “Dynamics of deep short pulse laser drilling: ablative stages and light propagation,” Laser Phys. 11, 343–351 (2001).

Kolev, V. Z.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71(17), 174405 (2005).
[CrossRef]

Kononenko, T. V.

T. V. Kononenko, V. Konov, S. Garnov, S. Klimentov, and F. Dausinger, “Dynamics of deep short pulse laser drilling: ablative stages and light propagation,” Laser Phys. 11, 343–351 (2001).

Konov, V.

T. V. Kononenko, V. Konov, S. Garnov, S. Klimentov, and F. Dausinger, “Dynamics of deep short pulse laser drilling: ablative stages and light propagation,” Laser Phys. 11, 343–351 (2001).

Kraus, M.

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
[CrossRef] [PubMed]

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” JLMN-Journal of Laser Micro/Nanoengineering 3(3), 129–134 (2008).

Leung, B. Y. C.

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiatiuon,” Phys. Rev. B 73(13), 134108 (2006).
[CrossRef]

Limpert, J.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[CrossRef]

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Liu, J. M.

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiatiuon,” Phys. Rev. B 73(13), 134108 (2006).
[CrossRef]

Lugarà, P. M.

Luther-Davies, B.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71(17), 174405 (2005).
[CrossRef]

Madsen, N. R.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71(17), 174405 (2005).
[CrossRef]

Magee, J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

Mannion, P. T.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

Marine, W.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiatiuon,” Phys. Rev. B 73(13), 134108 (2006).
[CrossRef]

Mezzapesa, F. P.

Michalowski, A.

Nielsen, C. S.

C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: a two stage process,” J. Appl. Phys. 99(9), 093101 (2006).
[CrossRef]

Nodop, D.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[CrossRef]

Nolte, S.

O’Connor, G. M.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

Ottonelli, S.

Putignano, M.

Rademaker, K.

Richter, S.

Rode, A. V.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71(17), 174405 (2005).
[CrossRef]

Romano, V.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Rosenfeld, A.

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74(22), 224106 (2006).
[CrossRef]

Röser, F.

Ruf, A.

A. Ruf, P. Berger, F. Dausinger, and H. Hugel, “Analytical investigations on geometrical influences on laser drilling,” J. Phys. D Appl. Phys. 34(18), 2918–2925 (2001).
[CrossRef]

Scamarcio, G.

Schulze, M.

C. Dorman and M. Schulze, “Picosecond micromachining update,” Laser Technik J. 5(4), 44–47 (2008).
[CrossRef]

Sentis, M.

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[CrossRef]

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Sibillano, T.

Sommer, S.

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” JLMN-Journal of Laser Micro/Nanoengineering 3(3), 129–134 (2008).

Stoian, R.

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74(22), 224106 (2006).
[CrossRef]

Stuart, B. C.

A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys., A Mater. Sci. Process. 76(3), 373–378 (2003).
[CrossRef]

Tünnermann, A.

Voss, A.

Weber, H. P.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Weber, R.

Webster, P. J. L.

Wynne, A. E.

A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys., A Mater. Sci. Process. 76(3), 373–378 (2003).
[CrossRef]

Yang, V. X. D.

Yu, J. X. Z.

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (2)

A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys., A Mater. Sci. Process. 76(3), 373–378 (2003).
[CrossRef]

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[CrossRef]

Appl. Surf. Sci. (3)

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[CrossRef]

S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005).
[CrossRef]

J. Appl. Phys. (1)

C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: a two stage process,” J. Appl. Phys. 99(9), 093101 (2006).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. Ruf, P. Berger, F. Dausinger, and H. Hugel, “Analytical investigations on geometrical influences on laser drilling,” J. Phys. D Appl. Phys. 34(18), 2918–2925 (2001).
[CrossRef]

JLMN-Journal of Laser Micro/Nanoengineering (1)

M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” JLMN-Journal of Laser Micro/Nanoengineering 3(3), 129–134 (2008).

Laser Phys. (1)

T. V. Kononenko, V. Konov, S. Garnov, S. Klimentov, and F. Dausinger, “Dynamics of deep short pulse laser drilling: ablative stages and light propagation,” Laser Phys. 11, 343–351 (2001).

Laser Technik J. (1)

C. Dorman and M. Schulze, “Picosecond micromachining update,” Laser Technik J. 5(4), 44–47 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. B (3)

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74(22), 224106 (2006).
[CrossRef]

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiatiuon,” Phys. Rev. B 73(13), 134108 (2006).
[CrossRef]

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71(17), 174405 (2005).
[CrossRef]

Other (1)

D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner and H. Lubatschowski, eds. (Springer, Berlin, 2004) Chap. 7,11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic layout of the experimental setup. PD: integrated monitor photodiode. LD: laser diode. LC: collimating lens. LF: focusing lens. PDext: external photodiode.

Fig. 2
Fig. 2

Real-time value of the ablated layer thickness plotted as a function of the ablation time for high-carbon steel (AISI 1095) microdrilled with increasing pulse fluence.

Fig. 3
Fig. 3

Ablation depth and ablation rate evolution during drilling of carbon steel targets for three different laser fluencies. (a) Instantaneous hole depth plotted as a function of the ablation time. (b) Ablation rate versus hole depth. The symbols are relative to samples A and the lines are for samples B, respectively (as stated in the text).

Fig. 4
Fig. 4

Ablation depth evolution during the laser ablation of stainless steel (open symbols) and carbon steel (full symbols) samples with 120ps laser pulses and three different laser fluencies.

Fig. 5
Fig. 5

Time-dependence of (a) the ablation front depth and (b) the ablation removal rate, during drilling of carbon steel (full diamonds), stainless steel (open diamonds) and aluminum (line) plates, respectively. The machining pulse fluence ~5.3 J/cm2.

Metrics