Abstract

Quantitative studies and experimental validation of noise sources occurring in chirped laser dispersion spectroscopy (CLaDS) are reported. Their impact on the signal-to-noise ratio (SNR) achievable with the CLaDS sensing method is analyzed through a noise model supported by experimental results. In particular the model shows that the SNR is optimal for a given value of the laser chirp rate. The experimental studies are conducted with a quantum cascade laser operating at 5.2 µm for the detection of nitric oxide. Optical fringing has been found to be a significant non-random source of noise and an effective reduction method that can improve the SNR is also discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
    [CrossRef]
  2. T. N. Anderson, R. P. Lucht, T. R. Meyer, S. Roy, and J. R. Gord, “Diode-laser-based ultraviolet-absorption sensor for high-speed detection of the hydroxyl radical,” Opt. Lett. 30(11), 1321–1323 (2005).
    [CrossRef] [PubMed]
  3. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1(1), 014001 (2007).
    [CrossRef] [PubMed]
  4. T. Rayner, M. Weida, M. Pushkarsky, and T. Day, “Remote explosive and chemical agent detection using broadly tunable mid-infrared external cavity quantum cascade lasers,” Proc. SPIE 6540, 65401Q (2007).
    [CrossRef]
  5. G. Wysocki and D. Weidmann, “Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser,” Opt. Express 18(25), 26123–26140 (2010).
    [CrossRef] [PubMed]
  6. M. Nikodem, C. Smith, D. Weidmann, and G. Wysocki, “Remote mid-infrared sensing using chirped laser dispersion spectroscopy,” Proc. SPIE 8024, 80240F (2011).
    [CrossRef]
  7. Alpes Lasers SA, http://www.alpeslasers.com/ .
  8. A. B. Carlson and P. B. Crilly, Communication Systems: An Introduction to Signal and Noise in Electrical Communication (McGraw-Hill Higher Education, 2010).
  9. D. Roar Hjelme, S. Neegård, and E. Vartdal, “Optical interference fringe reduction in frequency-modulation spectroscopy experiments,” Opt. Lett. 20(16), 1731–1733 (1995).
    [CrossRef] [PubMed]
  10. J. Reid, M. El-Sherbiny, B. K. Garside, and E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO(2) at the 100-ppt level,” Appl. Opt. 19(19), 3349–3353 (1980).
    [CrossRef] [PubMed]
  11. D. T. Cassidy and J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29(4), 279–285 (1982).
    [CrossRef]
  12. L.-G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6(5), 871–876 (1989).
    [CrossRef]
  13. H. Riris, C. B. Carlisle, R. E. Warren, and D. E. Cooper, “Signal-to-noise ratio enhancement in frequency-modulation spectrometers by digital signal processing,” Opt. Lett. 19(2), 144–146 (1994).
    [CrossRef] [PubMed]
  14. C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities,” J. Opt. Soc. Am. B 2(9), 1464–1470 (1985).
    [CrossRef]
  15. J. A. Silver and A. C. Slanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27(10), 1914–1916 (1988).
    [CrossRef] [PubMed]

2011 (1)

M. Nikodem, C. Smith, D. Weidmann, and G. Wysocki, “Remote mid-infrared sensing using chirped laser dispersion spectroscopy,” Proc. SPIE 8024, 80240F (2011).
[CrossRef]

2010 (2)

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

G. Wysocki and D. Weidmann, “Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser,” Opt. Express 18(25), 26123–26140 (2010).
[CrossRef] [PubMed]

2007 (2)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1(1), 014001 (2007).
[CrossRef] [PubMed]

T. Rayner, M. Weida, M. Pushkarsky, and T. Day, “Remote explosive and chemical agent detection using broadly tunable mid-infrared external cavity quantum cascade lasers,” Proc. SPIE 6540, 65401Q (2007).
[CrossRef]

2005 (1)

1995 (1)

1994 (1)

1989 (1)

1988 (1)

1985 (1)

1982 (1)

D. T. Cassidy and J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29(4), 279–285 (1982).
[CrossRef]

1980 (1)

Anderson, T. N.

Bakhirkin, Y.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1(1), 014001 (2007).
[CrossRef] [PubMed]

Ballik, E. A.

Carlisle, C. B.

Cassidy, D. T.

D. T. Cassidy and J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29(4), 279–285 (1982).
[CrossRef]

Cooper, D. E.

Day, T.

T. Rayner, M. Weida, M. Pushkarsky, and T. Day, “Remote explosive and chemical agent detection using broadly tunable mid-infrared external cavity quantum cascade lasers,” Proc. SPIE 6540, 65401Q (2007).
[CrossRef]

El-Sherbiny, M.

Gallagher, T. F.

Garside, B. K.

Gord, J. R.

Herndon, S.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Lewicki, R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1(1), 014001 (2007).
[CrossRef] [PubMed]

Lucht, R. P.

McCurdy, M. R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1(1), 014001 (2007).
[CrossRef] [PubMed]

McManus, J. B.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Meyer, T. R.

Neegård, S.

Nelson, J. D. D.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Nikodem, M.

M. Nikodem, C. Smith, D. Weidmann, and G. Wysocki, “Remote mid-infrared sensing using chirped laser dispersion spectroscopy,” Proc. SPIE 8024, 80240F (2011).
[CrossRef]

Pushkarsky, M.

T. Rayner, M. Weida, M. Pushkarsky, and T. Day, “Remote explosive and chemical agent detection using broadly tunable mid-infrared external cavity quantum cascade lasers,” Proc. SPIE 6540, 65401Q (2007).
[CrossRef]

Rayner, T.

T. Rayner, M. Weida, M. Pushkarsky, and T. Day, “Remote explosive and chemical agent detection using broadly tunable mid-infrared external cavity quantum cascade lasers,” Proc. SPIE 6540, 65401Q (2007).
[CrossRef]

Reid, J.

Riris, H.

Roar Hjelme, D.

Roy, S.

Shorter, J. H.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Silver, J. A.

Slanton, A. C.

Smith, C.

M. Nikodem, C. Smith, D. Weidmann, and G. Wysocki, “Remote mid-infrared sensing using chirped laser dispersion spectroscopy,” Proc. SPIE 8024, 80240F (2011).
[CrossRef]

Tate, D. A.

Tittel, F. K.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1(1), 014001 (2007).
[CrossRef] [PubMed]

Vartdal, E.

Wang, L.-G.

Warren, R. E.

Webster, C. R.

Wehr, R.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Weida, M.

T. Rayner, M. Weida, M. Pushkarsky, and T. Day, “Remote explosive and chemical agent detection using broadly tunable mid-infrared external cavity quantum cascade lasers,” Proc. SPIE 6540, 65401Q (2007).
[CrossRef]

Weidmann, D.

M. Nikodem, C. Smith, D. Weidmann, and G. Wysocki, “Remote mid-infrared sensing using chirped laser dispersion spectroscopy,” Proc. SPIE 8024, 80240F (2011).
[CrossRef]

G. Wysocki and D. Weidmann, “Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser,” Opt. Express 18(25), 26123–26140 (2010).
[CrossRef] [PubMed]

Wood, E.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Wysocki, G.

M. Nikodem, C. Smith, D. Weidmann, and G. Wysocki, “Remote mid-infrared sensing using chirped laser dispersion spectroscopy,” Proc. SPIE 8024, 80240F (2011).
[CrossRef]

G. Wysocki and D. Weidmann, “Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser,” Opt. Express 18(25), 26123–26140 (2010).
[CrossRef] [PubMed]

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1(1), 014001 (2007).
[CrossRef] [PubMed]

Zahniser, M. S.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

D. T. Cassidy and J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29(4), 279–285 (1982).
[CrossRef]

J. Breath Res. (1)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1(1), 014001 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

Opt. Eng. (1)

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (2)

T. Rayner, M. Weida, M. Pushkarsky, and T. Day, “Remote explosive and chemical agent detection using broadly tunable mid-infrared external cavity quantum cascade lasers,” Proc. SPIE 6540, 65401Q (2007).
[CrossRef]

M. Nikodem, C. Smith, D. Weidmann, and G. Wysocki, “Remote mid-infrared sensing using chirped laser dispersion spectroscopy,” Proc. SPIE 8024, 80240F (2011).
[CrossRef]

Other (2)

Alpes Lasers SA, http://www.alpeslasers.com/ .

A. B. Carlson and P. B. Crilly, Communication Systems: An Introduction to Signal and Noise in Electrical Communication (McGraw-Hill Higher Education, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental arrangement of CLaDS system.

Fig. 2
Fig. 2

(a) CLaDS signal and (b) noise measured at different chirp rates. Demodulation bandwidth Δf for each measurement was adjusted so that the Δf/S ratio was kept constant. (c) SNR calculated based on fitting parameters from (a) and (b) plotted together with the measured SNR.

Fig. 4
Fig. 4

(a) Contribution of each type of noise normalized to the total noise estimated. Calculation was performed for 1 s acquisition time; (b) total noise calculated using Eq. (4), with fringe noise (red) and assuming that fringes were removed (blue); (c) SNR calculated using Eq. (5), for gas mixture of 1.1% NO in N2, acquisition time of 1 s and optical path of 12.5 cm; blue – SNR for total noise, red – SNR assuming no fringes.

Fig. 5
Fig. 5

Effect of fringe averaging on the overall noise reduction: (top) temperature of the AOM was stable during the measurement and no improvement is achieved when 10000 scans are averaged; (bottom) temperature of the AOM was changed during measurement which led to a significant fringe noise reduction after averaging of multiple scans.

Fig. 6
Fig. 6

Noise level as a function of number of spectra averaged. A fringe-free measurement (taken at S = 0) shows purely Gaussian nature (green squares). Blue squares and red triangles correspond to noise recorded with and without fringe scrambling, respectively (both at S = 420 kHz/ns).

Fig. 7
Fig. 7

Noise as a function of the power of the heterodyne beatnote shown in logarithmic (left) and linear scale (right). Measured data (dots) are fitted with linear spline. The threshold is visible, above which the contributions from fringe noise and FM-noise to the total noise are comparable, thus the impact of the carrier power on the total noise is reduced.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f(ω)= 1 2π [ Ω+ SΔL c S L c c ω( dn dω | ωΩ dn dω | ω ) ],
N FM =A S 2 1 k .
N fringe =BS,
N total = 1 k N FM 2 + N DC 2 + N fringe
SNR(S)= DS 1 k A 2 S 4 + C 2 +BS ,

Metrics