Abstract

Gold nanostars are theoretically studied as efficient thermal heaters at their corresponding localized surface-plasmon resonances (LSPRs). Numerical calculations are performed through the 3D Green’s Theorem method to obtain the absorption and scattering cross sections for Au nanoparticles with star-like shape of varying symmetry and tip number. Their unique thermoplasmonic properties, with regard to their (red-shifted) LSPR wavelentgh, (∼ 30-fold increase) steady-state temperature, and scattering/absorption cross section ratios, make them specially suitable for optical heating and in turn for cancer thermal therapy.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Halas, S. Lal, C. Wei-Shun, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [CrossRef] [PubMed]
  2. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005).
    [CrossRef] [PubMed]
  3. M. A. Barral and A. M. Llois, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
    [CrossRef]
  4. C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
    [CrossRef] [PubMed]
  5. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
    [PubMed]
  6. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
    [CrossRef] [PubMed]
  7. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles we describe recent studies on photothermal effects using colloidal,” Nano Today 2, 30–38 (2007).
    [CrossRef]
  8. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007).
    [CrossRef]
  9. P. K. Jain, I. H. El-Hayed, and M. A. El-sayed, “Au nanoparticles target cancer,” Nano Today 7, 1929–1934 (2007).
  10. W. Zhao and J. M. Karp, “Tumour targeting: Nanoantennas heat up,” Nature Mater. 8, 453–454 (2009).
    [CrossRef]
  11. V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced Raman scattering,” Plasmonics 5, 99–104 (2010).
    [CrossRef]
  12. A. Tassadit, D. Macías, J. A. Sanchez-Gil, and R. Rodríguez-Oliveros, “Metal nanostars: Stochastic optimization of resonant scattering properties,” Superlattices Microst. 49, 288–293 (2011).
    [CrossRef]
  13. P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. J. García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
    [CrossRef] [PubMed]
  14. C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars,” Nano Lett. 11, 402–407 (2011).
    [CrossRef] [PubMed]
  15. S. Mazzuco, O. Stéphan, C. Colliex, I. Pastoriza-Santos, L. M. Liz-Marzán, and F. J. García de Abajo, “Spatially resolved measurements of plasmonic eigenstates in conplex-shaped, asymmetric nanoparticles: gols nanostars,” Eur. Phys. J. Appl. Phys. 54, 33512 (2011).
    [CrossRef]
  16. G. Baffou, P. M. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
    [CrossRef] [PubMed]
  17. B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).
  18. M. Honda, Y. Saito, N. I. Smith, K. Fujita, and S. Kawata, “Nanoscale heating of laser irradiated sigle gold nanoparticles in liquid,” Opt. Express 19, 12375–12383 (2011).
    [CrossRef] [PubMed]
  19. R. Rodríguez-Oliveros and J. A. Sanchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surface,” Opt. Express 19, 12208–12219 (2011).
    [CrossRef] [PubMed]
  20. J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes.” Am. J. Bot. 90, 333–338 (2003).
    [CrossRef] [PubMed]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  22. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
    [CrossRef]
  23. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 1–11 (2010).
    [CrossRef]
  24. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
    [CrossRef] [PubMed]
  25. J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-Active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
    [CrossRef]
  26. T. Vo-dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. Neng Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C pp. 7480–7488 (2010).
    [CrossRef]
  27. E. Nalbant Esenturk and A. R. Hight Walker, “Surface-enhanced Raman scattering spectroscopy via gold nanostars,” J. Raman Spectrosc. 40, 86–91 (2009).
    [CrossRef]
  28. J. M. Cabrera-Trujillo, J. M. Montejano-Carrizales, J. L. Rodríguez-López, W. Zhang, J. J. Velázquez-Salazar, and M. José-Yacaman, “Controlling and growth of stellated gold clusters: experimental synthesis and theoretical study,” J. Phys. Chem. C 114, 21051–21060 (2010).
    [CrossRef]

2011

N. J. Halas, S. Lal, C. Wei-Shun, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

A. Tassadit, D. Macías, J. A. Sanchez-Gil, and R. Rodríguez-Oliveros, “Metal nanostars: Stochastic optimization of resonant scattering properties,” Superlattices Microst. 49, 288–293 (2011).
[CrossRef]

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

M. Honda, Y. Saito, N. I. Smith, K. Fujita, and S. Kawata, “Nanoscale heating of laser irradiated sigle gold nanoparticles in liquid,” Opt. Express 19, 12375–12383 (2011).
[CrossRef] [PubMed]

R. Rodríguez-Oliveros and J. A. Sanchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surface,” Opt. Express 19, 12208–12219 (2011).
[CrossRef] [PubMed]

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars,” Nano Lett. 11, 402–407 (2011).
[CrossRef] [PubMed]

S. Mazzuco, O. Stéphan, C. Colliex, I. Pastoriza-Santos, L. M. Liz-Marzán, and F. J. García de Abajo, “Spatially resolved measurements of plasmonic eigenstates in conplex-shaped, asymmetric nanoparticles: gols nanostars,” Eur. Phys. J. Appl. Phys. 54, 33512 (2011).
[CrossRef]

2010

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 1–11 (2010).
[CrossRef]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[CrossRef] [PubMed]

T. Vo-dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. Neng Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C pp. 7480–7488 (2010).
[CrossRef]

J. M. Cabrera-Trujillo, J. M. Montejano-Carrizales, J. L. Rodríguez-López, W. Zhang, J. J. Velázquez-Salazar, and M. José-Yacaman, “Controlling and growth of stellated gold clusters: experimental synthesis and theoretical study,” J. Phys. Chem. C 114, 21051–21060 (2010).
[CrossRef]

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced Raman scattering,” Plasmonics 5, 99–104 (2010).
[CrossRef]

2009

W. Zhao and J. M. Karp, “Tumour targeting: Nanoantennas heat up,” Nature Mater. 8, 453–454 (2009).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

E. Nalbant Esenturk and A. R. Hight Walker, “Surface-enhanced Raman scattering spectroscopy via gold nanostars,” J. Raman Spectrosc. 40, 86–91 (2009).
[CrossRef]

G. Baffou, P. M. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
[CrossRef] [PubMed]

2008

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-Active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[CrossRef]

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. J. García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

2007

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles we describe recent studies on photothermal effects using colloidal,” Nano Today 2, 30–38 (2007).
[CrossRef]

F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007).
[CrossRef]

P. K. Jain, I. H. El-Hayed, and M. A. El-sayed, “Au nanoparticles target cancer,” Nano Today 7, 1929–1934 (2007).

2005

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

2004

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

2003

J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes.” Am. J. Bot. 90, 333–338 (2003).
[CrossRef] [PubMed]

2002

M. A. Barral and A. M. Llois, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Alexis, F.

F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007).
[CrossRef]

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 1–11 (2010).
[CrossRef]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[CrossRef] [PubMed]

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

G. Baffou, P. M. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
[CrossRef] [PubMed]

Barral, M. A.

M. A. Barral and A. M. Llois, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef]

Bartic, C.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Barton, J.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Borghs, G.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Braun, D.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005).
[CrossRef] [PubMed]

Cabrera-Trujillo, J. M.

J. M. Cabrera-Trujillo, J. M. Montejano-Carrizales, J. L. Rodríguez-López, W. Zhang, J. J. Velázquez-Salazar, and M. José-Yacaman, “Controlling and growth of stellated gold clusters: experimental synthesis and theoretical study,” J. Phys. Chem. C 114, 21051–21060 (2010).
[CrossRef]

Charra, F.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars,” Nano Lett. 11, 402–407 (2011).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Colliex, C.

S. Mazzuco, O. Stéphan, C. Colliex, I. Pastoriza-Santos, L. M. Liz-Marzán, and F. J. García de Abajo, “Spatially resolved measurements of plasmonic eigenstates in conplex-shaped, asymmetric nanoparticles: gols nanostars,” Eur. Phys. J. Appl. Phys. 54, 33512 (2011).
[CrossRef]

Dejugnat, C.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005).
[CrossRef] [PubMed]

Dhawan, A.

T. Vo-dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. Neng Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C pp. 7480–7488 (2010).
[CrossRef]

Douillard, L.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars,” Nano Lett. 11, 402–407 (2011).
[CrossRef] [PubMed]

Drezek, R.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

El-Hayed, I. H.

P. K. Jain, I. H. El-Hayed, and M. A. El-sayed, “Au nanoparticles target cancer,” Nano Today 7, 1929–1934 (2007).

El-sayed, M. A.

P. K. Jain, I. H. El-Hayed, and M. A. El-sayed, “Au nanoparticles target cancer,” Nano Today 7, 1929–1934 (2007).

Farokhzad, O. C.

F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007).
[CrossRef]

Fujita, K.

García de Abajo, F. J.

S. Mazzuco, O. Stéphan, C. Colliex, I. Pastoriza-Santos, L. M. Liz-Marzán, and F. J. García de Abajo, “Spatially resolved measurements of plasmonic eigenstates in conplex-shaped, asymmetric nanoparticles: gols nanostars,” Eur. Phys. J. Appl. Phys. 54, 33512 (2011).
[CrossRef]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[CrossRef] [PubMed]

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. J. García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

Gerhold, M. D.

T. Vo-dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. Neng Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C pp. 7480–7488 (2010).
[CrossRef]

Giannini, V.

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced Raman scattering,” Plasmonics 5, 99–104 (2010).
[CrossRef]

Gielis, J.

J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes.” Am. J. Bot. 90, 333–338 (2003).
[CrossRef] [PubMed]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 1–11 (2010).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

Govorov, A. O.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles we describe recent studies on photothermal effects using colloidal,” Nano Today 2, 30–38 (2007).
[CrossRef]

Grandjean, D.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Gu, F. X.

F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007).
[CrossRef]

Halas, N. J.

N. J. Halas, S. Lal, C. Wei-Shun, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Hight Walker, A. R.

E. Nalbant Esenturk and A. R. Hight Walker, “Surface-enhanced Raman scattering spectroscopy via gold nanostars,” J. Raman Spectrosc. 40, 86–91 (2009).
[CrossRef]

Hirsch, L.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Honda, M.

Hong, S.

F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007).
[CrossRef]

Hrelescu, C.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars,” Nano Lett. 11, 402–407 (2011).
[CrossRef] [PubMed]

Jäckel, F.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars,” Nano Lett. 11, 402–407 (2011).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, I. H. El-Hayed, and M. A. El-sayed, “Au nanoparticles target cancer,” Nano Today 7, 1929–1934 (2007).

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

José-Yacaman, M.

J. M. Cabrera-Trujillo, J. M. Montejano-Carrizales, J. L. Rodríguez-López, W. Zhang, J. J. Velázquez-Salazar, and M. José-Yacaman, “Controlling and growth of stellated gold clusters: experimental synthesis and theoretical study,” J. Phys. Chem. C 114, 21051–21060 (2010).
[CrossRef]

Karnik, R.

F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007).
[CrossRef]

Karp, J. M.

W. Zhao and J. M. Karp, “Tumour targeting: Nanoantennas heat up,” Nature Mater. 8, 453–454 (2009).
[CrossRef]

Kawata, S.

Khoury, C. G.

T. Vo-dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. Neng Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C pp. 7480–7488 (2010).
[CrossRef]

Kreuzer, P. M.

Kulzer, F.

Lagae, L.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Lal, S.

N. J. Halas, S. Lal, C. Wei-Shun, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

Langer, R. S.

F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007).
[CrossRef]

Laurent, G.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars,” Nano Lett. 11, 402–407 (2011).
[CrossRef] [PubMed]

Lee, J. Y.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-Active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[CrossRef]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Levy-Nissenbaum, E.

F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007).
[CrossRef]

Lin, A.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Link, S.

N. J. Halas, S. Lal, C. Wei-Shun, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

S. Mazzuco, O. Stéphan, C. Colliex, I. Pastoriza-Santos, L. M. Liz-Marzán, and F. J. García de Abajo, “Spatially resolved measurements of plasmonic eigenstates in conplex-shaped, asymmetric nanoparticles: gols nanostars,” Eur. Phys. J. Appl. Phys. 54, 33512 (2011).
[CrossRef]

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. J. García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

Llois, A. M.

M. A. Barral and A. M. Llois, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef]

Loo, C.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Lowery, A.

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

Macías, D.

A. Tassadit, D. Macías, J. A. Sanchez-Gil, and R. Rodríguez-Oliveros, “Metal nanostars: Stochastic optimization of resonant scattering properties,” Superlattices Microst. 49, 288–293 (2011).
[CrossRef]

Maes, G.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Mazzuco, S.

S. Mazzuco, O. Stéphan, C. Colliex, I. Pastoriza-Santos, L. M. Liz-Marzán, and F. J. García de Abajo, “Spatially resolved measurements of plasmonic eigenstates in conplex-shaped, asymmetric nanoparticles: gols nanostars,” Eur. Phys. J. Appl. Phys. 54, 33512 (2011).
[CrossRef]

Misra, V.

T. Vo-dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. Neng Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C pp. 7480–7488 (2010).
[CrossRef]

Möhwald, H.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005).
[CrossRef] [PubMed]

Montejano-Carrizales, J. M.

J. M. Cabrera-Trujillo, J. M. Montejano-Carrizales, J. L. Rodríguez-López, W. Zhang, J. J. Velázquez-Salazar, and M. José-Yacaman, “Controlling and growth of stellated gold clusters: experimental synthesis and theoretical study,” J. Phys. Chem. C 114, 21051–21060 (2010).
[CrossRef]

Nalbant Esenturk, E.

E. Nalbant Esenturk and A. R. Hight Walker, “Surface-enhanced Raman scattering spectroscopy via gold nanostars,” J. Raman Spectrosc. 40, 86–91 (2009).
[CrossRef]

Neng Wang, H.

T. Vo-dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. Neng Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C pp. 7480–7488 (2010).
[CrossRef]

Nikitenko, S.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Nordlander, P.

N. J. Halas, S. Lal, C. Wei-Shun, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

Norton, S. J.

T. Vo-dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. Neng Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C pp. 7480–7488 (2010).
[CrossRef]

Parak, W. J.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

S. Mazzuco, O. Stéphan, C. Colliex, I. Pastoriza-Santos, L. M. Liz-Marzán, and F. J. García de Abajo, “Spatially resolved measurements of plasmonic eigenstates in conplex-shaped, asymmetric nanoparticles: gols nanostars,” Eur. Phys. J. Appl. Phys. 54, 33512 (2011).
[CrossRef]

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. J. García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

Quidant, R.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[CrossRef] [PubMed]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 1–11 (2010).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

G. Baffou, P. M. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
[CrossRef] [PubMed]

Richardson, H. H.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles we describe recent studies on photothermal effects using colloidal,” Nano Today 2, 30–38 (2007).
[CrossRef]

Rodríguez-González, B.

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. J. García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

Rodríguez-López, J. L.

J. M. Cabrera-Trujillo, J. M. Montejano-Carrizales, J. L. Rodríguez-López, W. Zhang, J. J. Velázquez-Salazar, and M. José-Yacaman, “Controlling and growth of stellated gold clusters: experimental synthesis and theoretical study,” J. Phys. Chem. C 114, 21051–21060 (2010).
[CrossRef]

Rodríguez-Oliveros, R.

R. Rodríguez-Oliveros and J. A. Sanchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surface,” Opt. Express 19, 12208–12219 (2011).
[CrossRef] [PubMed]

A. Tassadit, D. Macías, J. A. Sanchez-Gil, and R. Rodríguez-Oliveros, “Metal nanostars: Stochastic optimization of resonant scattering properties,” Superlattices Microst. 49, 288–293 (2011).
[CrossRef]

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced Raman scattering,” Plasmonics 5, 99–104 (2010).
[CrossRef]

Rogach, A. L.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars,” Nano Lett. 11, 402–407 (2011).
[CrossRef] [PubMed]

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005).
[CrossRef] [PubMed]

Saito, Y.

Sanchez-Gil, J. A.

R. Rodríguez-Oliveros and J. A. Sanchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surface,” Opt. Express 19, 12208–12219 (2011).
[CrossRef] [PubMed]

A. Tassadit, D. Macías, J. A. Sanchez-Gil, and R. Rodríguez-Oliveros, “Metal nanostars: Stochastic optimization of resonant scattering properties,” Superlattices Microst. 49, 288–293 (2011).
[CrossRef]

Sánchez-Gil, J. A.

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced Raman scattering,” Plasmonics 5, 99–104 (2010).
[CrossRef]

Sau, T. K.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars,” Nano Lett. 11, 402–407 (2011).
[CrossRef] [PubMed]

Senthil Kumar, P.

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. J. García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

Skirtach, A. G.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005).
[CrossRef] [PubMed]

Smith, N. I.

Stéphan, O.

S. Mazzuco, O. Stéphan, C. Colliex, I. Pastoriza-Santos, L. M. Liz-Marzán, and F. J. García de Abajo, “Spatially resolved measurements of plasmonic eigenstates in conplex-shaped, asymmetric nanoparticles: gols nanostars,” Eur. Phys. J. Appl. Phys. 54, 33512 (2011).
[CrossRef]

Sukhorukov, G. B.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005).
[CrossRef] [PubMed]

Susha, A. S.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005).
[CrossRef] [PubMed]

Tassadit, A.

A. Tassadit, D. Macías, J. A. Sanchez-Gil, and R. Rodríguez-Oliveros, “Metal nanostars: Stochastic optimization of resonant scattering properties,” Superlattices Microst. 49, 288–293 (2011).
[CrossRef]

Temst, K.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Trekker, J.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Van Bael, M. J.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Van de Broek, B.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Velázquez-Salazar, J. J.

J. M. Cabrera-Trujillo, J. M. Montejano-Carrizales, J. L. Rodríguez-López, W. Zhang, J. J. Velázquez-Salazar, and M. José-Yacaman, “Controlling and growth of stellated gold clusters: experimental synthesis and theoretical study,” J. Phys. Chem. C 114, 21051–21060 (2010).
[CrossRef]

Verstreken, K.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Vo-dinh, T.

T. Vo-dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. Neng Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C pp. 7480–7488 (2010).
[CrossRef]

Wang, A. Z.

F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007).
[CrossRef]

Wang, D. I. C.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-Active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[CrossRef]

Wei-Shun, C.

N. J. Halas, S. Lal, C. Wei-Shun, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Xie, J.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-Active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[CrossRef]

Ye, J.

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Zhang, Q.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-Active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[CrossRef]

Zhang, W.

J. M. Cabrera-Trujillo, J. M. Montejano-Carrizales, J. L. Rodríguez-López, W. Zhang, J. J. Velázquez-Salazar, and M. José-Yacaman, “Controlling and growth of stellated gold clusters: experimental synthesis and theoretical study,” J. Phys. Chem. C 114, 21051–21060 (2010).
[CrossRef]

Zhao, W.

W. Zhao and J. M. Karp, “Tumour targeting: Nanoantennas heat up,” Nature Mater. 8, 453–454 (2009).
[CrossRef]

ACS Nano

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[CrossRef] [PubMed]

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-Active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[CrossRef]

Am. J. Bot.

J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes.” Am. J. Bot. 90, 333–338 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

Chem. Rev.

N. J. Halas, S. Lal, C. Wei-Shun, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef] [PubMed]

Eur. Phys. J. Appl. Phys.

S. Mazzuco, O. Stéphan, C. Colliex, I. Pastoriza-Santos, L. M. Liz-Marzán, and F. J. García de Abajo, “Spatially resolved measurements of plasmonic eigenstates in conplex-shaped, asymmetric nanoparticles: gols nanostars,” Eur. Phys. J. Appl. Phys. 54, 33512 (2011).
[CrossRef]

J. Phys. Chem. C

J. M. Cabrera-Trujillo, J. M. Montejano-Carrizales, J. L. Rodríguez-López, W. Zhang, J. J. Velázquez-Salazar, and M. José-Yacaman, “Controlling and growth of stellated gold clusters: experimental synthesis and theoretical study,” J. Phys. Chem. C 114, 21051–21060 (2010).
[CrossRef]

T. Vo-dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. Neng Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C pp. 7480–7488 (2010).
[CrossRef]

J. Raman Spectrosc.

E. Nalbant Esenturk and A. R. Hight Walker, “Surface-enhanced Raman scattering spectroscopy via gold nanostars,” J. Raman Spectrosc. 40, 86–91 (2009).
[CrossRef]

Nano Lett.

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars,” Nano Lett. 11, 402–407 (2011).
[CrossRef] [PubMed]

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

Nano Today

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles we describe recent studies on photothermal effects using colloidal,” Nano Today 2, 30–38 (2007).
[CrossRef]

F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007).
[CrossRef]

P. K. Jain, I. H. El-Hayed, and M. A. El-sayed, “Au nanoparticles target cancer,” Nano Today 7, 1929–1934 (2007).

Nanotechnology

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. J. García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

Nature Mater.

W. Zhao and J. M. Karp, “Tumour targeting: Nanoantennas heat up,” Nature Mater. 8, 453–454 (2009).
[CrossRef]

Opt. Express

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 1–11 (2010).
[CrossRef]

Plasmonics

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced Raman scattering,” Plasmonics 5, 99–104 (2010).
[CrossRef]

Science

M. A. Barral and A. M. Llois, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef]

Small

B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).

Superlattices Microst.

A. Tassadit, D. Macías, J. A. Sanchez-Gil, and R. Rodríguez-Oliveros, “Metal nanostars: Stochastic optimization of resonant scattering properties,” Superlattices Microst. 49, 288–293 (2011).
[CrossRef]

Technol. Cancer Res. Treat.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic representation of a 4-fold nanostar, with two relevant symmetry planes: the plane Π where the number of tips is varied and the polarization plane Σ. (b) Absorption cross sections for Au nanostars with different number of tips from S1 to S6, along with that for the equivalent Au nanosphere.

Fig. 2
Fig. 2

Distribution of electric field amplitudes in logarithmic scale on the surface of the Au nanostars at their corresponding LSPR wavelengths for an incident electric field contained into the plane Σ (see Fig. 1(a)).

Fig. 3
Fig. 3

(a) Absorption Qabs (solid curves) and scattering Qsca (dashed curves) cross sections for S4 (Au) NSs with constant volume and increasing sharpness for the vertexes, along with those for the equivalent Au nanosphere. (b) Temperature relative factor distribution map near to the sharpest Au nanostar S4, labeled as s = 0.125 in Fig. 3 (cyan), illuminated at its LSPR, λ = 860.2 nm. (c) Corresponding SF map at the LSPR.

Tables (1)

Tables Icon

Table 1 LSPR wavelengths λp and relative temperature factors τE for Au-NSs with given geometrical parameters: n, number of tips in the plane Π; s, the parameter that controls NS tip sharpness; and reff, effective radius.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = σ abs I 4 π κ r eff ,
r eff = i j ( A 1 ) i j ,
A i j = 1 | r i r j | ,
τ E ( ω ˜ , ω ) = T T = σ abs ( ω ˜ ) σ abs ( ω ) .

Metrics