Abstract

A new integrated-optic polarization rotator with anisotropic cladding formed by oblique angle deposition is presented. Optical anisotropy with tilt principal axes in the obliquely deposited columnar thin film induces hybrid polarization modes in the waveguide and thus produces polarization rotation. The dependence of device characteristics on columnar film parameters, such as column angle, film thickness, extraordinary index, and optical anisotropy, is investigated by 3D full-vectorial finite difference beam propagation method. The polarization rotator with Ta2O5 columnar thin film has polarization conversion efficiency as high as 99% and extinction ratio of 25dB.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Merterns, B. Scholl, and H. J. Schmitt, “Strong polarization conversion in periodically loaded strip waveguides,” IEEE Photon. Technol. Lett. 10(8), 1133–1135 (1998).
    [CrossRef]
  2. Z. Huang, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12(3), 317–319 (2000).
    [CrossRef]
  3. C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
    [CrossRef]
  4. J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
    [CrossRef]
  5. D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3(3), 381–389 (2011).
    [CrossRef]
  6. M. C. Oh, S. S. Lee, and S. Y. Shin, “Simulation of polarization converter formed by poling-induced polymer waveguides,” IEEE J. Quantum Electron. 31(9), 1698–1704 (1995).
    [CrossRef]
  7. A. V. Tsarev, “New compact polarization rotator in anisotropic LiNbO3 graded-index waveguide,” Opt. Express 16(3), 1653–1658 (2008).
    [CrossRef] [PubMed]
  8. T. Lang, F. Bahnmüller, and P. Benech, “New passive polarization converter on glass substrate,” IEEE Photon. Technol. Lett. 10(9), 1295–1297 (1998).
    [CrossRef]
  9. T. J. Wang and J. S. Chung, “Wavelength-tunable polarization converter utilizing the strain induced by proton exchange in lithium niobate,” Appl. Phys. B 80(2), 193–198 (2005).
    [CrossRef]
  10. H. Porte, J. P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on y-cut z-propagating LiNbO3 with an electro-optic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25(8), 1760–1762 (1989).
    [CrossRef]
  11. L. N. Binh, J. Livingstone, and D. H. Steven, “Tunable acousto-optic TE-TM mode converter on a diffused optical waveguide,” Opt. Lett. 5(3), 83–84 (1980).
    [CrossRef] [PubMed]
  12. P. K. Tien, R. J. Martin, R. Wolfe, R. C. Le craw, and S. L. Blank, “Switching and modulation of light in magneto-optic waveguides of garnet films,” Appl. Phys. Lett. 21(8), 394–396 (1972).
    [CrossRef]
  13. I. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37(13), 2653–2659 (1998).
    [CrossRef] [PubMed]
  14. M. A. Swillam, D. A. Khalil, and A. H. Morshed, “Effect of the fabrication and design parameters on the performance of multimode interference devices made by ion exchange: a detailed study,” J. Opt. A, Pure Appl. Opt. 10(12), 125301 (2008).
    [CrossRef]
  15. Q. Wang, G. Farrell, and Y. Semenova, “Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method,” J. Opt. Soc. Am. A 23(8), 2014–2019 (2006).
    [CrossRef] [PubMed]

2011 (1)

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3(3), 381–389 (2011).
[CrossRef]

2010 (1)

J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

2008 (2)

M. A. Swillam, D. A. Khalil, and A. H. Morshed, “Effect of the fabrication and design parameters on the performance of multimode interference devices made by ion exchange: a detailed study,” J. Opt. A, Pure Appl. Opt. 10(12), 125301 (2008).
[CrossRef]

A. V. Tsarev, “New compact polarization rotator in anisotropic LiNbO3 graded-index waveguide,” Opt. Express 16(3), 1653–1658 (2008).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

T. J. Wang and J. S. Chung, “Wavelength-tunable polarization converter utilizing the strain induced by proton exchange in lithium niobate,” Appl. Phys. B 80(2), 193–198 (2005).
[CrossRef]

2000 (1)

Z. Huang, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12(3), 317–319 (2000).
[CrossRef]

1998 (3)

K. Merterns, B. Scholl, and H. J. Schmitt, “Strong polarization conversion in periodically loaded strip waveguides,” IEEE Photon. Technol. Lett. 10(8), 1133–1135 (1998).
[CrossRef]

T. Lang, F. Bahnmüller, and P. Benech, “New passive polarization converter on glass substrate,” IEEE Photon. Technol. Lett. 10(9), 1295–1297 (1998).
[CrossRef]

I. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37(13), 2653–2659 (1998).
[CrossRef] [PubMed]

1996 (1)

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

1995 (1)

M. C. Oh, S. S. Lee, and S. Y. Shin, “Simulation of polarization converter formed by poling-induced polymer waveguides,” IEEE J. Quantum Electron. 31(9), 1698–1704 (1995).
[CrossRef]

1989 (1)

H. Porte, J. P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on y-cut z-propagating LiNbO3 with an electro-optic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25(8), 1760–1762 (1989).
[CrossRef]

1980 (1)

1972 (1)

P. K. Tien, R. J. Martin, R. Wolfe, R. C. Le craw, and S. L. Blank, “Switching and modulation of light in magneto-optic waveguides of garnet films,” Appl. Phys. Lett. 21(8), 394–396 (1972).
[CrossRef]

Bahnmüller, F.

T. Lang, F. Bahnmüller, and P. Benech, “New passive polarization converter on glass substrate,” IEEE Photon. Technol. Lett. 10(9), 1295–1297 (1998).
[CrossRef]

Benech, P.

T. Lang, F. Bahnmüller, and P. Benech, “New passive polarization converter on glass substrate,” IEEE Photon. Technol. Lett. 10(9), 1295–1297 (1998).
[CrossRef]

Binh, L. N.

Blank, S. L.

P. K. Tien, R. J. Martin, R. Wolfe, R. C. Le craw, and S. L. Blank, “Switching and modulation of light in magneto-optic waveguides of garnet films,” Appl. Phys. Lett. 21(8), 394–396 (1972).
[CrossRef]

Chung, J. S.

T. J. Wang and J. S. Chung, “Wavelength-tunable polarization converter utilizing the strain induced by proton exchange in lithium niobate,” Appl. Phys. B 80(2), 193–198 (2005).
[CrossRef]

Farrell, G.

Ferriere, R.

H. Porte, J. P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on y-cut z-propagating LiNbO3 with an electro-optic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25(8), 1760–1762 (1989).
[CrossRef]

Fort, N.

H. Porte, J. P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on y-cut z-propagating LiNbO3 with an electro-optic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25(8), 1760–1762 (1989).
[CrossRef]

Goedgebuer, J. P.

H. Porte, J. P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on y-cut z-propagating LiNbO3 with an electro-optic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25(8), 1760–1762 (1989).
[CrossRef]

Grattan, K. T. V.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3(3), 381–389 (2011).
[CrossRef]

Groen, F. H.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

Hamacher, M.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

Hazel, J.

Heidrich, H.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

Hodgkinson, I.

Huang, Z.

Z. Huang, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12(3), 317–319 (2000).
[CrossRef]

Khalil, D. A.

M. A. Swillam, D. A. Khalil, and A. H. Morshed, “Effect of the fabrication and design parameters on the performance of multimode interference devices made by ion exchange: a detailed study,” J. Opt. A, Pure Appl. Opt. 10(12), 125301 (2008).
[CrossRef]

Kwong, D.-L.

J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

Lang, T.

T. Lang, F. Bahnmüller, and P. Benech, “New passive polarization converter on glass substrate,” IEEE Photon. Technol. Lett. 10(9), 1295–1297 (1998).
[CrossRef]

Le craw, R. C.

P. K. Tien, R. J. Martin, R. Wolfe, R. C. Le craw, and S. L. Blank, “Switching and modulation of light in magneto-optic waveguides of garnet films,” Appl. Phys. Lett. 21(8), 394–396 (1972).
[CrossRef]

Lee, S. S.

M. C. Oh, S. S. Lee, and S. Y. Shin, “Simulation of polarization converter formed by poling-induced polymer waveguides,” IEEE J. Quantum Electron. 31(9), 1698–1704 (1995).
[CrossRef]

Leung, D. M. H.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3(3), 381–389 (2011).
[CrossRef]

Livingstone, J.

Lo, G.-Q.

J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

Martin, R. J.

P. K. Tien, R. J. Martin, R. Wolfe, R. C. Le craw, and S. L. Blank, “Switching and modulation of light in magneto-optic waveguides of garnet films,” Appl. Phys. Lett. 21(8), 394–396 (1972).
[CrossRef]

Merterns, K.

K. Merterns, B. Scholl, and H. J. Schmitt, “Strong polarization conversion in periodically loaded strip waveguides,” IEEE Photon. Technol. Lett. 10(8), 1133–1135 (1998).
[CrossRef]

Moerman, I.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

Morshed, A. H.

M. A. Swillam, D. A. Khalil, and A. H. Morshed, “Effect of the fabrication and design parameters on the performance of multimode interference devices made by ion exchange: a detailed study,” J. Opt. A, Pure Appl. Opt. 10(12), 125301 (2008).
[CrossRef]

Nagy, G.

Z. Huang, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12(3), 317–319 (2000).
[CrossRef]

Oh, M. C.

M. C. Oh, S. S. Lee, and S. Y. Shin, “Simulation of polarization converter formed by poling-induced polymer waveguides,” IEEE J. Quantum Electron. 31(9), 1698–1704 (1995).
[CrossRef]

Osgood, R. M.

Z. Huang, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12(3), 317–319 (2000).
[CrossRef]

Pascher, W. W.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

Porte, H.

H. Porte, J. P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on y-cut z-propagating LiNbO3 with an electro-optic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25(8), 1760–1762 (1989).
[CrossRef]

Rahman, B. M. A.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3(3), 381–389 (2011).
[CrossRef]

Scarmozzino, R.

Z. Huang, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12(3), 317–319 (2000).
[CrossRef]

Schmitt, H. J.

K. Merterns, B. Scholl, and H. J. Schmitt, “Strong polarization conversion in periodically loaded strip waveguides,” IEEE Photon. Technol. Lett. 10(8), 1133–1135 (1998).
[CrossRef]

Scholl, B.

K. Merterns, B. Scholl, and H. J. Schmitt, “Strong polarization conversion in periodically loaded strip waveguides,” IEEE Photon. Technol. Lett. 10(8), 1133–1135 (1998).
[CrossRef]

Semenova, Y.

Shin, S. Y.

M. C. Oh, S. S. Lee, and S. Y. Shin, “Simulation of polarization converter formed by poling-induced polymer waveguides,” IEEE J. Quantum Electron. 31(9), 1698–1704 (1995).
[CrossRef]

Smit, M. K.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

Spiekman, L. H.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

Steel, J.

Z. Huang, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12(3), 317–319 (2000).
[CrossRef]

Steven, D. H.

Swillam, M. A.

M. A. Swillam, D. A. Khalil, and A. H. Morshed, “Effect of the fabrication and design parameters on the performance of multimode interference devices made by ion exchange: a detailed study,” J. Opt. A, Pure Appl. Opt. 10(12), 125301 (2008).
[CrossRef]

Tien, P. K.

P. K. Tien, R. J. Martin, R. Wolfe, R. C. Le craw, and S. L. Blank, “Switching and modulation of light in magneto-optic waveguides of garnet films,” Appl. Phys. Lett. 21(8), 394–396 (1972).
[CrossRef]

Tsarev, A. V.

van Dam, C.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

van der Tol, J. J. G. M.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

van Ham, F. P. G. M.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

Wang, Q.

Wang, T. J.

T. J. Wang and J. S. Chung, “Wavelength-tunable polarization converter utilizing the strain induced by proton exchange in lithium niobate,” Appl. Phys. B 80(2), 193–198 (2005).
[CrossRef]

Weinert, C. M.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

Wolfe, R.

P. K. Tien, R. J. Martin, R. Wolfe, R. C. Le craw, and S. L. Blank, “Switching and modulation of light in magneto-optic waveguides of garnet films,” Appl. Phys. Lett. 21(8), 394–396 (1972).
[CrossRef]

Wu, Q. H.

Yu, M.

J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

Zhang, J.

J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

T. J. Wang and J. S. Chung, “Wavelength-tunable polarization converter utilizing the strain induced by proton exchange in lithium niobate,” Appl. Phys. B 80(2), 193–198 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

P. K. Tien, R. J. Martin, R. Wolfe, R. C. Le craw, and S. L. Blank, “Switching and modulation of light in magneto-optic waveguides of garnet films,” Appl. Phys. Lett. 21(8), 394–396 (1972).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Porte, J. P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on y-cut z-propagating LiNbO3 with an electro-optic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25(8), 1760–1762 (1989).
[CrossRef]

M. C. Oh, S. S. Lee, and S. Y. Shin, “Simulation of polarization converter formed by poling-induced polymer waveguides,” IEEE J. Quantum Electron. 31(9), 1698–1704 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

IEEE Photon. J. (1)

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3(3), 381–389 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

K. Merterns, B. Scholl, and H. J. Schmitt, “Strong polarization conversion in periodically loaded strip waveguides,” IEEE Photon. Technol. Lett. 10(8), 1133–1135 (1998).
[CrossRef]

Z. Huang, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12(3), 317–319 (2000).
[CrossRef]

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996).
[CrossRef]

T. Lang, F. Bahnmüller, and P. Benech, “New passive polarization converter on glass substrate,” IEEE Photon. Technol. Lett. 10(9), 1295–1297 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

M. A. Swillam, D. A. Khalil, and A. H. Morshed, “Effect of the fabrication and design parameters on the performance of multimode interference devices made by ion exchange: a detailed study,” J. Opt. A, Pure Appl. Opt. 10(12), 125301 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Device structure of the polarization rotator with obliquely deposited columnar thin film.

Fig. 2
Fig. 2

Dependence of normalized power for quasi-TM and quasi-TE polarizations on the propagation distance.

Fig. 3
Fig. 3

Dependence of conversion efficiency and device length on (a) film thickness; (b) extraordinary index.

Fig. 4
Fig. 4

Dependence of (a) conversion efficiency; (b) device length; on column angle.

Fig. 5
Fig. 5

Dependence of extraordinary index and optical anisotropy on column angle for Ta2O5 columnar film.

Fig. 6
Fig. 6

Dependence of conversion efficiency and device length on (a) film thickness; (b) column angle; in the polarization rotator using the Ta2O5 columnar thin film.

Fig. 7
Fig. 7

The evolution of (a) the normalized power; (b) the propagating field at the specified positions; in the polarization rotator with t = 0.4μm, θ = 60°, ne = 1.7423, and Δn = 0.0913.

Fig. 8
Fig. 8

The evolution of (a) the normalized power; (b) the propagating field at the specified positions; in the polarization rotator with t = 0.7μm, θ = 45°, ne = 1.6458, and Δn = 0.1234.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε=[ n o 2 +( n e 2 n o 2 ) cos 2 θ ( n e 2 n o 2 )sinθcosθ 0 ( n e 2 n o 2 )sinθcosθ n o 2 +( n e 2 n o 2 ) sin 2 θ 0 0 0 n o 2 ]

Metrics