Abstract

We study the infrared photosensitivity properties of two optical polymer materials, benzocyclobutene (BCB) and epoxy OPTOCAST 3505, with a 10.6 μm CO2 laser. We discover that the CO2 laser radiation can lower the refractive index of BCB by as much as 5.5 × 10−3, while inducing no measurable index change in the epoxy. As confirmed by Fourier transform infrared spectroscopy, the observed index change in BCB can be attributed to photothermal modification of chemical bonds in the material by the CO2 laser radiation. Our findings open up a new possibility of processing polymer materials with a CO2 laser, which could be further developed for application in the areas of post-processing and direct-writing of polymer waveguide devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
    [CrossRef]
  2. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14(7), 1704–1713 (1996).
    [CrossRef]
  3. J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett. 39(4), 394–395 (2003).
    [CrossRef]
  4. L. Y. Chen, W. S. Tsai, W. H. Hsu, K. Y. Chen, and W. S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43(4), 303–310 (2007).
    [CrossRef]
  5. W. C. Wang, M. Fisher, A. Yacoubian, and J. Menders, “Phase-shifted Bragg grating filters in polymer waveguides,” IEEE Photon. Technol. Lett. 15(4), 548–550 (2003).
    [CrossRef]
  6. D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
    [CrossRef]
  7. K. P. Lor, K. S. Chiang, Q. Liu, and H. P. Chan, “Ultraviolet writing of buried waveguide devices in epoxy-coated benzocyclobutene,” Opt. Eng. 48(4), 044601 (2009).
    [CrossRef]
  8. C. Dinger, T. Sterkenburgh, T. Holler, and H. Franke, “Patterning multimode polymeric lightguides using a CO2 laser,” Proc. SPIE 1774, 278–287 (1993).
    [CrossRef]
  9. S. S. Zakariyah, P. P. Conway, D. A. Hutt, D. R. Selviah, K. Wang, H. Baghsiahi, J. Rygate, J. Calver, and W. Kandulski, “Polymer optical waveguide fabrication using laser ablation,” in Proceedings of IEEE Conference on Electronics Packaging Technology (Institute of Electrical and Electronics Engineers, New York, 2009), 936–941.
  10. L. Ç. Özcan, F. Guay, R. Kashyap, and L. Martinu, “Investigation of refractive index modifications in CW CO2 laser written planar optical waveguides,” Opt. Commun. 281(14), 3686–3690 (2008).
    [CrossRef]
  11. Q. Liu and K. S. Chiang, “CO2-laser writing of polymer long-period waveguide gratings,” in Proceedings of IEEE Conference on Photonics Global Singapore (Institute of Electrical and Electronics Engineers, New York, 2008), C62–C65.
  12. F. Kane and R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7(5), 535–537 (1995).
    [CrossRef]
  13. Dow Chemical Company, Processing Procedures, http://www.dow.com/cyclotene/prod/302235.htm .
  14. Y. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, and T. Zhu, “Light coupling between two parallel CO2-laser written long-period fiber gratings,” Opt. Express 15(26), 17645–17651 (2007).
    [CrossRef] [PubMed]
  15. H. W. Lee and K. S. Chiang, “CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension,” Opt. Express 17(6), 4533–4539 (2009).
    [CrossRef] [PubMed]
  16. B. H. Stuart, Infrared Spectroscopy: Fundamentals, and Applications (Wiley, Chichester, 2004).
  17. D. W. Zeng and K. C. Yung, “XPS investigation on Upilex-S polyimide ablated by pulse TEA CO2 laser,” Appl. Surf. Sci. 180(3-4), 280–285 (2001).
    [CrossRef]
  18. A. Hartwig, G. Vitr, S. Dieckhoff, and O.-D. Hennemann, “Surface treatment of an epoxy resin by CO2 laser irradiation,” Die Angew. Makromol. Chem. 238(1), 177–189 (1996).
    [CrossRef]
  19. M. Dadsetan, H. Miradeh, and N. Sharifi, “Effect of CO2 laser radiation on the surface properties of polyethylene terephthalate,” Radiat. Phys. Chem. 56(5-6), 597–604 (1999).
    [CrossRef]
  20. W. W. Duley and R. E. Mueller, “CO2 laser welding of polymers,” Polym. Eng. Sci. 32(9), 582–585 (1992).
    [CrossRef]

2009 (2)

K. P. Lor, K. S. Chiang, Q. Liu, and H. P. Chan, “Ultraviolet writing of buried waveguide devices in epoxy-coated benzocyclobutene,” Opt. Eng. 48(4), 044601 (2009).
[CrossRef]

H. W. Lee and K. S. Chiang, “CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension,” Opt. Express 17(6), 4533–4539 (2009).
[CrossRef] [PubMed]

2008 (1)

L. Ç. Özcan, F. Guay, R. Kashyap, and L. Martinu, “Investigation of refractive index modifications in CW CO2 laser written planar optical waveguides,” Opt. Commun. 281(14), 3686–3690 (2008).
[CrossRef]

2007 (2)

Y. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, and T. Zhu, “Light coupling between two parallel CO2-laser written long-period fiber gratings,” Opt. Express 15(26), 17645–17651 (2007).
[CrossRef] [PubMed]

L. Y. Chen, W. S. Tsai, W. H. Hsu, K. Y. Chen, and W. S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43(4), 303–310 (2007).
[CrossRef]

2005 (1)

D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
[CrossRef]

2003 (2)

J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett. 39(4), 394–395 (2003).
[CrossRef]

W. C. Wang, M. Fisher, A. Yacoubian, and J. Menders, “Phase-shifted Bragg grating filters in polymer waveguides,” IEEE Photon. Technol. Lett. 15(4), 548–550 (2003).
[CrossRef]

2001 (1)

D. W. Zeng and K. C. Yung, “XPS investigation on Upilex-S polyimide ablated by pulse TEA CO2 laser,” Appl. Surf. Sci. 180(3-4), 280–285 (2001).
[CrossRef]

2000 (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

1999 (1)

M. Dadsetan, H. Miradeh, and N. Sharifi, “Effect of CO2 laser radiation on the surface properties of polyethylene terephthalate,” Radiat. Phys. Chem. 56(5-6), 597–604 (1999).
[CrossRef]

1996 (2)

A. Hartwig, G. Vitr, S. Dieckhoff, and O.-D. Hennemann, “Surface treatment of an epoxy resin by CO2 laser irradiation,” Die Angew. Makromol. Chem. 238(1), 177–189 (1996).
[CrossRef]

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14(7), 1704–1713 (1996).
[CrossRef]

1995 (1)

F. Kane and R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7(5), 535–537 (1995).
[CrossRef]

1993 (1)

C. Dinger, T. Sterkenburgh, T. Holler, and H. Franke, “Patterning multimode polymeric lightguides using a CO2 laser,” Proc. SPIE 1774, 278–287 (1993).
[CrossRef]

1992 (1)

W. W. Duley and R. E. Mueller, “CO2 laser welding of polymers,” Polym. Eng. Sci. 32(9), 582–585 (1992).
[CrossRef]

Albanis, V.

J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett. 39(4), 394–395 (2003).
[CrossRef]

Chan, H. P.

K. P. Lor, K. S. Chiang, Q. Liu, and H. P. Chan, “Ultraviolet writing of buried waveguide devices in epoxy-coated benzocyclobutene,” Opt. Eng. 48(4), 044601 (2009).
[CrossRef]

Chen, K. Y.

L. Y. Chen, W. S. Tsai, W. H. Hsu, K. Y. Chen, and W. S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43(4), 303–310 (2007).
[CrossRef]

Chen, L. Y.

L. Y. Chen, W. S. Tsai, W. H. Hsu, K. Y. Chen, and W. S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43(4), 303–310 (2007).
[CrossRef]

Chiang, K. S.

Dadsetan, M.

M. Dadsetan, H. Miradeh, and N. Sharifi, “Effect of CO2 laser radiation on the surface properties of polyethylene terephthalate,” Radiat. Phys. Chem. 56(5-6), 597–604 (1999).
[CrossRef]

Dieckhoff, S.

A. Hartwig, G. Vitr, S. Dieckhoff, and O.-D. Hennemann, “Surface treatment of an epoxy resin by CO2 laser irradiation,” Die Angew. Makromol. Chem. 238(1), 177–189 (1996).
[CrossRef]

Dinger, C.

C. Dinger, T. Sterkenburgh, T. Holler, and H. Franke, “Patterning multimode polymeric lightguides using a CO2 laser,” Proc. SPIE 1774, 278–287 (1993).
[CrossRef]

Duley, W. W.

W. W. Duley and R. E. Mueller, “CO2 laser welding of polymers,” Polym. Eng. Sci. 32(9), 582–585 (1992).
[CrossRef]

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14(7), 1704–1713 (1996).
[CrossRef]

Emmerson, G. D.

J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett. 39(4), 394–395 (2003).
[CrossRef]

Fisher, M.

W. C. Wang, M. Fisher, A. Yacoubian, and J. Menders, “Phase-shifted Bragg grating filters in polymer waveguides,” IEEE Photon. Technol. Lett. 15(4), 548–550 (2003).
[CrossRef]

Franke, H.

C. Dinger, T. Sterkenburgh, T. Holler, and H. Franke, “Patterning multimode polymeric lightguides using a CO2 laser,” Proc. SPIE 1774, 278–287 (1993).
[CrossRef]

Gawith, C. B. E.

J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett. 39(4), 394–395 (2003).
[CrossRef]

Grossel, M. C.

J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett. 39(4), 394–395 (2003).
[CrossRef]

Guay, F.

L. Ç. Özcan, F. Guay, R. Kashyap, and L. Martinu, “Investigation of refractive index modifications in CW CO2 laser written planar optical waveguides,” Opt. Commun. 281(14), 3686–3690 (2008).
[CrossRef]

Hartwig, A.

A. Hartwig, G. Vitr, S. Dieckhoff, and O.-D. Hennemann, “Surface treatment of an epoxy resin by CO2 laser irradiation,” Die Angew. Makromol. Chem. 238(1), 177–189 (1996).
[CrossRef]

Hennemann, O.-D.

A. Hartwig, G. Vitr, S. Dieckhoff, and O.-D. Hennemann, “Surface treatment of an epoxy resin by CO2 laser irradiation,” Die Angew. Makromol. Chem. 238(1), 177–189 (1996).
[CrossRef]

Henzi, P.

D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
[CrossRef]

Holler, T.

C. Dinger, T. Sterkenburgh, T. Holler, and H. Franke, “Patterning multimode polymeric lightguides using a CO2 laser,” Proc. SPIE 1774, 278–287 (1993).
[CrossRef]

Hsu, W. H.

L. Y. Chen, W. S. Tsai, W. H. Hsu, K. Y. Chen, and W. S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43(4), 303–310 (2007).
[CrossRef]

Kane, F.

F. Kane and R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7(5), 535–537 (1995).
[CrossRef]

Kashyap, R.

L. Ç. Özcan, F. Guay, R. Kashyap, and L. Martinu, “Investigation of refractive index modifications in CW CO2 laser written planar optical waveguides,” Opt. Commun. 281(14), 3686–3690 (2008).
[CrossRef]

Koo, J. S.

J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett. 39(4), 394–395 (2003).
[CrossRef]

Krchnavek, R. R.

F. Kane and R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7(5), 535–537 (1995).
[CrossRef]

Lee, H. W.

Liu, Q.

K. P. Lor, K. S. Chiang, Q. Liu, and H. P. Chan, “Ultraviolet writing of buried waveguide devices in epoxy-coated benzocyclobutene,” Opt. Eng. 48(4), 044601 (2009).
[CrossRef]

Liu, Y.

Lor, K. P.

K. P. Lor, K. S. Chiang, Q. Liu, and H. P. Chan, “Ultraviolet writing of buried waveguide devices in epoxy-coated benzocyclobutene,” Opt. Eng. 48(4), 044601 (2009).
[CrossRef]

Martinu, L.

L. Ç. Özcan, F. Guay, R. Kashyap, and L. Martinu, “Investigation of refractive index modifications in CW CO2 laser written planar optical waveguides,” Opt. Commun. 281(14), 3686–3690 (2008).
[CrossRef]

Menders, J.

W. C. Wang, M. Fisher, A. Yacoubian, and J. Menders, “Phase-shifted Bragg grating filters in polymer waveguides,” IEEE Photon. Technol. Lett. 15(4), 548–550 (2003).
[CrossRef]

Miradeh, H.

M. Dadsetan, H. Miradeh, and N. Sharifi, “Effect of CO2 laser radiation on the surface properties of polyethylene terephthalate,” Radiat. Phys. Chem. 56(5-6), 597–604 (1999).
[CrossRef]

Mohr, J.

D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
[CrossRef]

Mueller, R. E.

W. W. Duley and R. E. Mueller, “CO2 laser welding of polymers,” Polym. Eng. Sci. 32(9), 582–585 (1992).
[CrossRef]

Özcan, L. Ç.

L. Ç. Özcan, F. Guay, R. Kashyap, and L. Martinu, “Investigation of refractive index modifications in CW CO2 laser written planar optical waveguides,” Opt. Commun. 281(14), 3686–3690 (2008).
[CrossRef]

Rabus, D. G.

D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14(7), 1704–1713 (1996).
[CrossRef]

Sharifi, N.

M. Dadsetan, H. Miradeh, and N. Sharifi, “Effect of CO2 laser radiation on the surface properties of polyethylene terephthalate,” Radiat. Phys. Chem. 56(5-6), 597–604 (1999).
[CrossRef]

Smith, P. G. R.

J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett. 39(4), 394–395 (2003).
[CrossRef]

Stengel, K. M. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14(7), 1704–1713 (1996).
[CrossRef]

Sterkenburgh, T.

C. Dinger, T. Sterkenburgh, T. Holler, and H. Franke, “Patterning multimode polymeric lightguides using a CO2 laser,” Proc. SPIE 1774, 278–287 (1993).
[CrossRef]

Tsai, W. S.

L. Y. Chen, W. S. Tsai, W. H. Hsu, K. Y. Chen, and W. S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43(4), 303–310 (2007).
[CrossRef]

Vitr, G.

A. Hartwig, G. Vitr, S. Dieckhoff, and O.-D. Hennemann, “Surface treatment of an epoxy resin by CO2 laser irradiation,” Die Angew. Makromol. Chem. 238(1), 177–189 (1996).
[CrossRef]

Wang, W. C.

W. C. Wang, M. Fisher, A. Yacoubian, and J. Menders, “Phase-shifted Bragg grating filters in polymer waveguides,” IEEE Photon. Technol. Lett. 15(4), 548–550 (2003).
[CrossRef]

Wang, W. S.

L. Y. Chen, W. S. Tsai, W. H. Hsu, K. Y. Chen, and W. S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43(4), 303–310 (2007).
[CrossRef]

Watts, S. P.

J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett. 39(4), 394–395 (2003).
[CrossRef]

Williams, R. B.

J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett. 39(4), 394–395 (2003).
[CrossRef]

Xu, C.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14(7), 1704–1713 (1996).
[CrossRef]

Yacoubian, A.

W. C. Wang, M. Fisher, A. Yacoubian, and J. Menders, “Phase-shifted Bragg grating filters in polymer waveguides,” IEEE Photon. Technol. Lett. 15(4), 548–550 (2003).
[CrossRef]

Yardley, J. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14(7), 1704–1713 (1996).
[CrossRef]

Yung, K. C.

D. W. Zeng and K. C. Yung, “XPS investigation on Upilex-S polyimide ablated by pulse TEA CO2 laser,” Appl. Surf. Sci. 180(3-4), 280–285 (2001).
[CrossRef]

Zeng, D. W.

D. W. Zeng and K. C. Yung, “XPS investigation on Upilex-S polyimide ablated by pulse TEA CO2 laser,” Appl. Surf. Sci. 180(3-4), 280–285 (2001).
[CrossRef]

Zhu, T.

Appl. Surf. Sci. (1)

D. W. Zeng and K. C. Yung, “XPS investigation on Upilex-S polyimide ablated by pulse TEA CO2 laser,” Appl. Surf. Sci. 180(3-4), 280–285 (2001).
[CrossRef]

Die Angew. Makromol. Chem. (1)

A. Hartwig, G. Vitr, S. Dieckhoff, and O.-D. Hennemann, “Surface treatment of an epoxy resin by CO2 laser irradiation,” Die Angew. Makromol. Chem. 238(1), 177–189 (1996).
[CrossRef]

Electron. Lett. (1)

J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett. 39(4), 394–395 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Y. Chen, W. S. Tsai, W. H. Hsu, K. Y. Chen, and W. S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43(4), 303–310 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

W. C. Wang, M. Fisher, A. Yacoubian, and J. Menders, “Phase-shifted Bragg grating filters in polymer waveguides,” IEEE Photon. Technol. Lett. 15(4), 548–550 (2003).
[CrossRef]

D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett. 17(3), 591–593 (2005).
[CrossRef]

F. Kane and R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7(5), 535–537 (1995).
[CrossRef]

J. Lightwave Technol. (1)

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14(7), 1704–1713 (1996).
[CrossRef]

Opt. Commun. (1)

L. Ç. Özcan, F. Guay, R. Kashyap, and L. Martinu, “Investigation of refractive index modifications in CW CO2 laser written planar optical waveguides,” Opt. Commun. 281(14), 3686–3690 (2008).
[CrossRef]

Opt. Eng. (1)

K. P. Lor, K. S. Chiang, Q. Liu, and H. P. Chan, “Ultraviolet writing of buried waveguide devices in epoxy-coated benzocyclobutene,” Opt. Eng. 48(4), 044601 (2009).
[CrossRef]

Opt. Express (2)

Polym. Eng. Sci. (1)

W. W. Duley and R. E. Mueller, “CO2 laser welding of polymers,” Polym. Eng. Sci. 32(9), 582–585 (1992).
[CrossRef]

Proc. SPIE (1)

C. Dinger, T. Sterkenburgh, T. Holler, and H. Franke, “Patterning multimode polymeric lightguides using a CO2 laser,” Proc. SPIE 1774, 278–287 (1993).
[CrossRef]

Radiat. Phys. Chem. (1)

M. Dadsetan, H. Miradeh, and N. Sharifi, “Effect of CO2 laser radiation on the surface properties of polyethylene terephthalate,” Radiat. Phys. Chem. 56(5-6), 597–604 (1999).
[CrossRef]

Other (4)

Dow Chemical Company, Processing Procedures, http://www.dow.com/cyclotene/prod/302235.htm .

B. H. Stuart, Infrared Spectroscopy: Fundamentals, and Applications (Wiley, Chichester, 2004).

S. S. Zakariyah, P. P. Conway, D. A. Hutt, D. R. Selviah, K. Wang, H. Baghsiahi, J. Rygate, J. Calver, and W. Kandulski, “Polymer optical waveguide fabrication using laser ablation,” in Proceedings of IEEE Conference on Electronics Packaging Technology (Institute of Electrical and Electronics Engineers, New York, 2009), 936–941.

Q. Liu and K. S. Chiang, “CO2-laser writing of polymer long-period waveguide gratings,” in Proceedings of IEEE Conference on Photonics Global Singapore (Institute of Electrical and Electronics Engineers, New York, 2008), C62–C65.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dependence of the index changes in O2 cured BCB films for the TE and TM polarizations on the number of scan cycles at different energy densities of CO2 laser radiation: (a) 100, (b) 120, (c) 140, (d) 160, and (e) 180 mJ/mm2. The solid lines are fitting curves.

Fig. 2
Fig. 2

Microscopic images of an O2 cured BCB film (a) before and (b) after CO2 laser irradiation at 180 mJ/mm2 (10 scan cycles), and (c) another film after CO2 laser irradiation at 200 mJ/mm2 (1 scan cycle).

Fig. 3
Fig. 3

Dependence of the index changes in N2 cured BCB films for the TE and TM polarizations on the number of scan cycles at different energy densities of CO2 laser radiation: (a) 100 and (b) 180 mJ/mm2. The solid lines in (b) are fitting curves.

Fig. 4
Fig. 4

Microscopic images of a N2 cured BCB film (a) before and (b) after CO2 laser irradiation at 180 mJ/mm2 (6 scan cycles), and (c) another film after CO2 laser irradiation at 200 mJ/mm2 (1 scan cycle).

Fig. 5
Fig. 5

(a) Infrared absorption spectra of an O2 cured BCB film measured before and after CO2 laser irradiation at 180 mJ/mm2, and (b) their difference.

Fig. 6
Fig. 6

Infrared absorption spectra of an epoxy film measured before and after CO2 laser irradiation at 150 mJ/mm2.

Fig. 7
Fig. 7

Microscopic images of an epoxy film irradiated (a) before and (b) after CO2 laser irradiation at 100 mJ/mm2 (3 scan cycles), and (c) another film after CO2 laser irradiation at 150 mJ/mm2 (1 scan cycle).

Metrics