Abstract

Ultrasonic vibration has been employed to improve the quality of machined surface in the grinding of brittle materials. In this report, we transplant the philosophy of ultrasonic vibration assisted grinding to chemo-mechanical bound-abrasive-pellet polishing in anticipation of the improvement in either surface roughness or material removal rate. The preliminary experimental results show that the ultrasonic vibration assisted chemo-mechanical pellet polishing can yield desired results that material removal rate can be significantly raised while surface roughness is not degraded. The experimental results also indicate different mechanisms between ultrasonic-vibration-assisted chemo-mechanical pellet polishing and conventional chemo-mechanical bound-abrasive polishing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Hed, “Calculations of material removal, removal rate and Preston coefficient in continuous lapping/polishing machines,” Lawrence Livermore National Laboratory Report, UCRL-ID-115321 (1993).
  2. A. Tesar and B. A. Fuchs, “Removal rates of fused silica with cerium oxide/pitch polishing,” Proc. SPIE 1531, 80–90 (1992).
    [CrossRef]
  3. M. J. Cumbo, “Chemo-mechanical Interactions in optical polishing,” Ph.D. Dissertation, Univ. of Rochester, (Rochester, NY, 1993).
  4. R. R. Berggren and R. A. Schmell, “Pad polishing for rapid production of large flats,” Proc. SPIE 3134, 252–257 (1997).
    [CrossRef]
  5. Y. Li, J. Hou, Q. Xu, J. Wang, W. Yang, and Y. Guo, “The characteristics of optics polished with a polyurethane pad,” Opt. Express 16(14), 10285–10293 (2008).
    [CrossRef] [PubMed]
  6. D. Golini and S. D. Jacobs, “Physics of loose abrasive microgrinding,” Appl. Opt. 30(19), 2761–2777 (1991).
    [CrossRef] [PubMed]
  7. T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Ind. 113(2), 184–189 (1991).
    [CrossRef]
  8. B. K. A. Ngoi and P. S. Sreejith, “Ductile regime finish machining – a review,” Int. J. Adv. Manuf. Technol. 16(8), 547–550 (2000).
    [CrossRef]
  9. H. Ohmori and T. Nakagawa, “Analysis of mirror surface generation of hard and brittle materials by ELID (Electronic In-Process Dressing) grinding with superfine grain metallic bond wheels,” Ann. CIRP 44(1), 287–290 (1995).
    [CrossRef]
  10. W. Lin, H. Ohmori, Y. Yamagata, and S. Moriyasu, “Improvement in the ground surface roughness of fused silica X-ray mirror with ELID-grinding,” Key Eng. Mater. 238–239, 143–146 (2003).
    [CrossRef]
  11. A. S. Kumar, H. S. Lim, M. Rahman, and K. Fathima, “A study on the grinding of glass using electrolytic in-process dressing,” J. Electron. Mater. 31(10), 1039–1046 (2002).
    [CrossRef]
  12. W. Qu, K. Wang, M. H. Miller, Y. Huang, and A. Chandra, “Using vibration-assisted grinding to reduce subsurface damage,” Precis. Eng. 24(4), 329–337 (2000).
    [CrossRef]
  13. D. E. Brehl and T. A. Dow, “Review of vibration-assisted machining,” Precis. Eng. 32(3), 153–172 (2008).
    [CrossRef]
  14. B. E. Gillman and S. D. Jacobs, “Bound-abrasive polishers for optical glass,” Appl. Opt. 37(16), 3498–3505 (1998).
    [CrossRef] [PubMed]
  15. V. V. Rogov, Y. Filatov, W. Kottler, and V. P. Sobol, “New technology of precision polishing of glass optics,” Opt. Eng. 40(8), 1641–1645 (2001).
    [CrossRef]
  16. Y. D. Filatov, O. Y. Filatov, G. Monteil, U. Heisel, and M. Storchak, “Bound-abrasive grinding and polishing of surfaces of optical materials,” Opt. Eng. 50(6), 063401 (2011).
    [CrossRef]
  17. A. A. Tesar, B. A. Fuchs, and P. P. Hed, “Examination of the polished surface character of fused silica,” Appl. Opt. 31(34), 7164–7172 (1992).
    [CrossRef] [PubMed]
  18. A. Tesar, B. Fuchs, and P. Hed, “Improvement in polishing of fused-silica parts,” Appl. Opt. 30(31), 4459 (1991).
    [CrossRef] [PubMed]
  19. J. Matsuzawa, A. Sugimoto, M. Yoshida, K. Hirai, T. Ashizawa, and Y. Ootsuki, “Method for producing cerium oxide, cerium oxide abrasive, method for polishing substrate using the same and method for manufacturing semiconductor device,” US Patent No. US6615499 B1, (Sep. 9, 2003).
  20. L. Zhou, T. Shiina, Z. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33(4), 499–504 (2009).
    [CrossRef]
  21. I. D. Marinesu, M. Hitchiner, E. Uhlmann, W. B. Rowe, and I. Inasaki, Handbook of Machining with Grinding Wheels (CRC Press, 2007), Chap. 20.
  22. C. Brecher, R. Schug, A. Weber, C. Wenzel, and S. Hannig, “New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding,” Int. J. Adv. Manuf. Technol. 47(1–4), 153–159 (2010).
    [CrossRef]
  23. N. Suzuki, S. Masuda, M. Haritani, and E. Shamoto, “Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting,” in Proceedings of IEEE Conference on Micro-Nano Mechatronics and Human Science (Institute of Electrical and Electronics Engineers, 2004), 133–138.
  24. T. Izumitani, Optical Glass, (1984) (in Japanese) [Translated by the American Institute of Physics (New York, USA, 1986), Chap. 4].
  25. T. Kasai and N. Yasunaga, Precision Grinding for High Additional Value (Nikkan Kogyo Shimbun, Ltd., 2010), Chap. 1.1 (in Japanese).
  26. L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding,” Ann. CIRP 55(1), 313–316 (2006).
    [CrossRef]
  27. B. Lawn, Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, 1993), Chap. 8.

2011

Y. D. Filatov, O. Y. Filatov, G. Monteil, U. Heisel, and M. Storchak, “Bound-abrasive grinding and polishing of surfaces of optical materials,” Opt. Eng. 50(6), 063401 (2011).
[CrossRef]

2010

C. Brecher, R. Schug, A. Weber, C. Wenzel, and S. Hannig, “New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding,” Int. J. Adv. Manuf. Technol. 47(1–4), 153–159 (2010).
[CrossRef]

2009

L. Zhou, T. Shiina, Z. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33(4), 499–504 (2009).
[CrossRef]

2008

2006

L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding,” Ann. CIRP 55(1), 313–316 (2006).
[CrossRef]

2003

W. Lin, H. Ohmori, Y. Yamagata, and S. Moriyasu, “Improvement in the ground surface roughness of fused silica X-ray mirror with ELID-grinding,” Key Eng. Mater. 238–239, 143–146 (2003).
[CrossRef]

2002

A. S. Kumar, H. S. Lim, M. Rahman, and K. Fathima, “A study on the grinding of glass using electrolytic in-process dressing,” J. Electron. Mater. 31(10), 1039–1046 (2002).
[CrossRef]

2001

V. V. Rogov, Y. Filatov, W. Kottler, and V. P. Sobol, “New technology of precision polishing of glass optics,” Opt. Eng. 40(8), 1641–1645 (2001).
[CrossRef]

2000

W. Qu, K. Wang, M. H. Miller, Y. Huang, and A. Chandra, “Using vibration-assisted grinding to reduce subsurface damage,” Precis. Eng. 24(4), 329–337 (2000).
[CrossRef]

B. K. A. Ngoi and P. S. Sreejith, “Ductile regime finish machining – a review,” Int. J. Adv. Manuf. Technol. 16(8), 547–550 (2000).
[CrossRef]

1998

1997

R. R. Berggren and R. A. Schmell, “Pad polishing for rapid production of large flats,” Proc. SPIE 3134, 252–257 (1997).
[CrossRef]

1995

H. Ohmori and T. Nakagawa, “Analysis of mirror surface generation of hard and brittle materials by ELID (Electronic In-Process Dressing) grinding with superfine grain metallic bond wheels,” Ann. CIRP 44(1), 287–290 (1995).
[CrossRef]

1992

A. Tesar and B. A. Fuchs, “Removal rates of fused silica with cerium oxide/pitch polishing,” Proc. SPIE 1531, 80–90 (1992).
[CrossRef]

A. A. Tesar, B. A. Fuchs, and P. P. Hed, “Examination of the polished surface character of fused silica,” Appl. Opt. 31(34), 7164–7172 (1992).
[CrossRef] [PubMed]

1991

Berggren, R. R.

R. R. Berggren and R. A. Schmell, “Pad polishing for rapid production of large flats,” Proc. SPIE 3134, 252–257 (1997).
[CrossRef]

Bifano, T. G.

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Ind. 113(2), 184–189 (1991).
[CrossRef]

Brecher, C.

C. Brecher, R. Schug, A. Weber, C. Wenzel, and S. Hannig, “New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding,” Int. J. Adv. Manuf. Technol. 47(1–4), 153–159 (2010).
[CrossRef]

Brehl, D. E.

D. E. Brehl and T. A. Dow, “Review of vibration-assisted machining,” Precis. Eng. 32(3), 153–172 (2008).
[CrossRef]

Chandra, A.

W. Qu, K. Wang, M. H. Miller, Y. Huang, and A. Chandra, “Using vibration-assisted grinding to reduce subsurface damage,” Precis. Eng. 24(4), 329–337 (2000).
[CrossRef]

Dow, T. A.

D. E. Brehl and T. A. Dow, “Review of vibration-assisted machining,” Precis. Eng. 32(3), 153–172 (2008).
[CrossRef]

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Ind. 113(2), 184–189 (1991).
[CrossRef]

Eda, H.

L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding,” Ann. CIRP 55(1), 313–316 (2006).
[CrossRef]

Fathima, K.

A. S. Kumar, H. S. Lim, M. Rahman, and K. Fathima, “A study on the grinding of glass using electrolytic in-process dressing,” J. Electron. Mater. 31(10), 1039–1046 (2002).
[CrossRef]

Filatov, O. Y.

Y. D. Filatov, O. Y. Filatov, G. Monteil, U. Heisel, and M. Storchak, “Bound-abrasive grinding and polishing of surfaces of optical materials,” Opt. Eng. 50(6), 063401 (2011).
[CrossRef]

Filatov, Y.

V. V. Rogov, Y. Filatov, W. Kottler, and V. P. Sobol, “New technology of precision polishing of glass optics,” Opt. Eng. 40(8), 1641–1645 (2001).
[CrossRef]

Filatov, Y. D.

Y. D. Filatov, O. Y. Filatov, G. Monteil, U. Heisel, and M. Storchak, “Bound-abrasive grinding and polishing of surfaces of optical materials,” Opt. Eng. 50(6), 063401 (2011).
[CrossRef]

Fuchs, B.

Fuchs, B. A.

A. A. Tesar, B. A. Fuchs, and P. P. Hed, “Examination of the polished surface character of fused silica,” Appl. Opt. 31(34), 7164–7172 (1992).
[CrossRef] [PubMed]

A. Tesar and B. A. Fuchs, “Removal rates of fused silica with cerium oxide/pitch polishing,” Proc. SPIE 1531, 80–90 (1992).
[CrossRef]

Gillman, B. E.

Golini, D.

Guo, Y.

Hannig, S.

C. Brecher, R. Schug, A. Weber, C. Wenzel, and S. Hannig, “New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding,” Int. J. Adv. Manuf. Technol. 47(1–4), 153–159 (2010).
[CrossRef]

Hed, P.

Hed, P. P.

Heisel, U.

Y. D. Filatov, O. Y. Filatov, G. Monteil, U. Heisel, and M. Storchak, “Bound-abrasive grinding and polishing of surfaces of optical materials,” Opt. Eng. 50(6), 063401 (2011).
[CrossRef]

Hou, J.

Huang, Y.

W. Qu, K. Wang, M. H. Miller, Y. Huang, and A. Chandra, “Using vibration-assisted grinding to reduce subsurface damage,” Precis. Eng. 24(4), 329–337 (2000).
[CrossRef]

Iwase, H.

L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding,” Ann. CIRP 55(1), 313–316 (2006).
[CrossRef]

Jacobs, S. D.

Kamiya, S.

L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding,” Ann. CIRP 55(1), 313–316 (2006).
[CrossRef]

Kimura, S.

L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding,” Ann. CIRP 55(1), 313–316 (2006).
[CrossRef]

Kottler, W.

V. V. Rogov, Y. Filatov, W. Kottler, and V. P. Sobol, “New technology of precision polishing of glass optics,” Opt. Eng. 40(8), 1641–1645 (2001).
[CrossRef]

Kumar, A. S.

A. S. Kumar, H. S. Lim, M. Rahman, and K. Fathima, “A study on the grinding of glass using electrolytic in-process dressing,” J. Electron. Mater. 31(10), 1039–1046 (2002).
[CrossRef]

Li, Y.

Lim, H. S.

A. S. Kumar, H. S. Lim, M. Rahman, and K. Fathima, “A study on the grinding of glass using electrolytic in-process dressing,” J. Electron. Mater. 31(10), 1039–1046 (2002).
[CrossRef]

Lin, W.

W. Lin, H. Ohmori, Y. Yamagata, and S. Moriyasu, “Improvement in the ground surface roughness of fused silica X-ray mirror with ELID-grinding,” Key Eng. Mater. 238–239, 143–146 (2003).
[CrossRef]

Miller, M. H.

W. Qu, K. Wang, M. H. Miller, Y. Huang, and A. Chandra, “Using vibration-assisted grinding to reduce subsurface damage,” Precis. Eng. 24(4), 329–337 (2000).
[CrossRef]

Monteil, G.

Y. D. Filatov, O. Y. Filatov, G. Monteil, U. Heisel, and M. Storchak, “Bound-abrasive grinding and polishing of surfaces of optical materials,” Opt. Eng. 50(6), 063401 (2011).
[CrossRef]

Moriyasu, S.

W. Lin, H. Ohmori, Y. Yamagata, and S. Moriyasu, “Improvement in the ground surface roughness of fused silica X-ray mirror with ELID-grinding,” Key Eng. Mater. 238–239, 143–146 (2003).
[CrossRef]

Nakagawa, T.

H. Ohmori and T. Nakagawa, “Analysis of mirror surface generation of hard and brittle materials by ELID (Electronic In-Process Dressing) grinding with superfine grain metallic bond wheels,” Ann. CIRP 44(1), 287–290 (1995).
[CrossRef]

Ngoi, B. K. A.

B. K. A. Ngoi and P. S. Sreejith, “Ductile regime finish machining – a review,” Int. J. Adv. Manuf. Technol. 16(8), 547–550 (2000).
[CrossRef]

Ohmori, H.

W. Lin, H. Ohmori, Y. Yamagata, and S. Moriyasu, “Improvement in the ground surface roughness of fused silica X-ray mirror with ELID-grinding,” Key Eng. Mater. 238–239, 143–146 (2003).
[CrossRef]

H. Ohmori and T. Nakagawa, “Analysis of mirror surface generation of hard and brittle materials by ELID (Electronic In-Process Dressing) grinding with superfine grain metallic bond wheels,” Ann. CIRP 44(1), 287–290 (1995).
[CrossRef]

Qiu, Z.

L. Zhou, T. Shiina, Z. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33(4), 499–504 (2009).
[CrossRef]

Qu, W.

W. Qu, K. Wang, M. H. Miller, Y. Huang, and A. Chandra, “Using vibration-assisted grinding to reduce subsurface damage,” Precis. Eng. 24(4), 329–337 (2000).
[CrossRef]

Rahman, M.

A. S. Kumar, H. S. Lim, M. Rahman, and K. Fathima, “A study on the grinding of glass using electrolytic in-process dressing,” J. Electron. Mater. 31(10), 1039–1046 (2002).
[CrossRef]

Rogov, V. V.

V. V. Rogov, Y. Filatov, W. Kottler, and V. P. Sobol, “New technology of precision polishing of glass optics,” Opt. Eng. 40(8), 1641–1645 (2001).
[CrossRef]

Sato, H.

L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding,” Ann. CIRP 55(1), 313–316 (2006).
[CrossRef]

Scattergood, R. O.

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Ind. 113(2), 184–189 (1991).
[CrossRef]

Schmell, R. A.

R. R. Berggren and R. A. Schmell, “Pad polishing for rapid production of large flats,” Proc. SPIE 3134, 252–257 (1997).
[CrossRef]

Schug, R.

C. Brecher, R. Schug, A. Weber, C. Wenzel, and S. Hannig, “New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding,” Int. J. Adv. Manuf. Technol. 47(1–4), 153–159 (2010).
[CrossRef]

Shiina, T.

L. Zhou, T. Shiina, Z. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33(4), 499–504 (2009).
[CrossRef]

Shimizu, J.

L. Zhou, T. Shiina, Z. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33(4), 499–504 (2009).
[CrossRef]

L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding,” Ann. CIRP 55(1), 313–316 (2006).
[CrossRef]

Sobol, V. P.

V. V. Rogov, Y. Filatov, W. Kottler, and V. P. Sobol, “New technology of precision polishing of glass optics,” Opt. Eng. 40(8), 1641–1645 (2001).
[CrossRef]

Sreejith, P. S.

B. K. A. Ngoi and P. S. Sreejith, “Ductile regime finish machining – a review,” Int. J. Adv. Manuf. Technol. 16(8), 547–550 (2000).
[CrossRef]

Storchak, M.

Y. D. Filatov, O. Y. Filatov, G. Monteil, U. Heisel, and M. Storchak, “Bound-abrasive grinding and polishing of surfaces of optical materials,” Opt. Eng. 50(6), 063401 (2011).
[CrossRef]

Tashiro, T.

L. Zhou, T. Shiina, Z. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33(4), 499–504 (2009).
[CrossRef]

Tesar, A.

A. Tesar and B. A. Fuchs, “Removal rates of fused silica with cerium oxide/pitch polishing,” Proc. SPIE 1531, 80–90 (1992).
[CrossRef]

A. Tesar, B. Fuchs, and P. Hed, “Improvement in polishing of fused-silica parts,” Appl. Opt. 30(31), 4459 (1991).
[CrossRef] [PubMed]

Tesar, A. A.

Wang, J.

Wang, K.

W. Qu, K. Wang, M. H. Miller, Y. Huang, and A. Chandra, “Using vibration-assisted grinding to reduce subsurface damage,” Precis. Eng. 24(4), 329–337 (2000).
[CrossRef]

Weber, A.

C. Brecher, R. Schug, A. Weber, C. Wenzel, and S. Hannig, “New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding,” Int. J. Adv. Manuf. Technol. 47(1–4), 153–159 (2010).
[CrossRef]

Wenzel, C.

C. Brecher, R. Schug, A. Weber, C. Wenzel, and S. Hannig, “New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding,” Int. J. Adv. Manuf. Technol. 47(1–4), 153–159 (2010).
[CrossRef]

Xu, Q.

Yamagata, Y.

W. Lin, H. Ohmori, Y. Yamagata, and S. Moriyasu, “Improvement in the ground surface roughness of fused silica X-ray mirror with ELID-grinding,” Key Eng. Mater. 238–239, 143–146 (2003).
[CrossRef]

Yamamoto, T.

L. Zhou, T. Shiina, Z. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33(4), 499–504 (2009).
[CrossRef]

Yang, W.

Zhou, L.

L. Zhou, T. Shiina, Z. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33(4), 499–504 (2009).
[CrossRef]

L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding,” Ann. CIRP 55(1), 313–316 (2006).
[CrossRef]

Ann. CIRP

H. Ohmori and T. Nakagawa, “Analysis of mirror surface generation of hard and brittle materials by ELID (Electronic In-Process Dressing) grinding with superfine grain metallic bond wheels,” Ann. CIRP 44(1), 287–290 (1995).
[CrossRef]

L. Zhou, H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, and H. Sato, “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding,” Ann. CIRP 55(1), 313–316 (2006).
[CrossRef]

Appl. Opt.

Int. J. Adv. Manuf. Technol.

B. K. A. Ngoi and P. S. Sreejith, “Ductile regime finish machining – a review,” Int. J. Adv. Manuf. Technol. 16(8), 547–550 (2000).
[CrossRef]

C. Brecher, R. Schug, A. Weber, C. Wenzel, and S. Hannig, “New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding,” Int. J. Adv. Manuf. Technol. 47(1–4), 153–159 (2010).
[CrossRef]

J. Electron. Mater.

A. S. Kumar, H. S. Lim, M. Rahman, and K. Fathima, “A study on the grinding of glass using electrolytic in-process dressing,” J. Electron. Mater. 31(10), 1039–1046 (2002).
[CrossRef]

J. Eng. Ind.

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Ind. 113(2), 184–189 (1991).
[CrossRef]

Key Eng. Mater.

W. Lin, H. Ohmori, Y. Yamagata, and S. Moriyasu, “Improvement in the ground surface roughness of fused silica X-ray mirror with ELID-grinding,” Key Eng. Mater. 238–239, 143–146 (2003).
[CrossRef]

Opt. Eng.

V. V. Rogov, Y. Filatov, W. Kottler, and V. P. Sobol, “New technology of precision polishing of glass optics,” Opt. Eng. 40(8), 1641–1645 (2001).
[CrossRef]

Y. D. Filatov, O. Y. Filatov, G. Monteil, U. Heisel, and M. Storchak, “Bound-abrasive grinding and polishing of surfaces of optical materials,” Opt. Eng. 50(6), 063401 (2011).
[CrossRef]

Opt. Express

Precis. Eng.

L. Zhou, T. Shiina, Z. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33(4), 499–504 (2009).
[CrossRef]

W. Qu, K. Wang, M. H. Miller, Y. Huang, and A. Chandra, “Using vibration-assisted grinding to reduce subsurface damage,” Precis. Eng. 24(4), 329–337 (2000).
[CrossRef]

D. E. Brehl and T. A. Dow, “Review of vibration-assisted machining,” Precis. Eng. 32(3), 153–172 (2008).
[CrossRef]

Proc. SPIE

A. Tesar and B. A. Fuchs, “Removal rates of fused silica with cerium oxide/pitch polishing,” Proc. SPIE 1531, 80–90 (1992).
[CrossRef]

R. R. Berggren and R. A. Schmell, “Pad polishing for rapid production of large flats,” Proc. SPIE 3134, 252–257 (1997).
[CrossRef]

Other

I. D. Marinesu, M. Hitchiner, E. Uhlmann, W. B. Rowe, and I. Inasaki, Handbook of Machining with Grinding Wheels (CRC Press, 2007), Chap. 20.

B. Lawn, Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, 1993), Chap. 8.

M. J. Cumbo, “Chemo-mechanical Interactions in optical polishing,” Ph.D. Dissertation, Univ. of Rochester, (Rochester, NY, 1993).

J. Matsuzawa, A. Sugimoto, M. Yoshida, K. Hirai, T. Ashizawa, and Y. Ootsuki, “Method for producing cerium oxide, cerium oxide abrasive, method for polishing substrate using the same and method for manufacturing semiconductor device,” US Patent No. US6615499 B1, (Sep. 9, 2003).

N. Suzuki, S. Masuda, M. Haritani, and E. Shamoto, “Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting,” in Proceedings of IEEE Conference on Micro-Nano Mechatronics and Human Science (Institute of Electrical and Electronics Engineers, 2004), 133–138.

T. Izumitani, Optical Glass, (1984) (in Japanese) [Translated by the American Institute of Physics (New York, USA, 1986), Chap. 4].

T. Kasai and N. Yasunaga, Precision Grinding for High Additional Value (Nikkan Kogyo Shimbun, Ltd., 2010), Chap. 1.1 (in Japanese).

P. P. Hed, “Calculations of material removal, removal rate and Preston coefficient in continuous lapping/polishing machines,” Lawrence Livermore National Laboratory Report, UCRL-ID-115321 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The sketch of ultrasonic vibration polishing machine. The polishing head is capable of moving back and forth in X direction. The downward load is exerted by the movement of the head along Z axis. Two identical polishing pellets were stuck to the PZT vibrator. During the polishing, the head was oscillating in the X axis and the lower spindle rotated independently.

Fig. 2
Fig. 2

The path of the grinding head due to ultrasonic vibration (f=15.3kHz, Vp-p=150V, phase difference=135°).

Fig. 3
Fig. 3

The surface roughness Ra (a) and material removal (b) versus machining time for fused silica ground with sand paper 1500#. The initial surface roughness was ~0.2μm. With the increase in machining time, the surface roughness in both cases decreases exponentially and approaches to a constant value of ~2nm. The material removal ramps up irrespective of the addition of ultrasonic vibration.

Fig. 4
Fig. 4

The surface roughness Ra (a) and material removal (b) versus machining time for pre-polished fused silica samples. The initial surface roughness was <1.0nm. With the increase in machining time, the surface roughness in UV CMM slightly increases and then stabilizes whereas the material removal is approximately proportional to the machining time as in UV CMM of ground surface. Nonetheless, little removal of material in conventional CMM stands in stark contrast to UV CMM.

Fig. 5
Fig. 5

Surface morphologies manufactured with conventional chemo-mechanical machining (a) and UV chemo-mechanical machining (b). The conspicuous periodic structure with a period of ~35μm is readily identified on the UV chemo-mechanical machined surface (c), which is considered to result from ultrasonic vibration.

Fig. 6
Fig. 6

Comparison of normal forces before and after introducing ultrasonic vibration. The normal force decreased by >10% after imposing ultrasonic vibration upon polishing head.

Tables (1)

Tables Icon

Table 1 Processing Parameters and Specs of Ultrasonic Vibration Used in the Experiments

Metrics