Abstract

This paper reports a type of low Ohmic loss terahertz (THz) metamaterials made from low-temperature superconducting niobium nitride (NbN) films. Its resonance properties are studied by THz time domain spectroscopy. Our experiments show that its unloaded quality factor reaches as high as 178 at 8 K with the resonance frequency at around 0.58 THz, which is about 24 times that of gold metamaterial at the same temperature. The unloaded quality factor keeps at a high level, above 90, even when the resonance frequency increases to 1.02 THz, which is close to the gap frequency of NbN film. All these experimental observations fit well into the framework of Bardeen-Copper-Schrieffer theory and equivalent circuit model. These new metamaterials offer an efficient way to the design and implementation of high performance THz electronic devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  4. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
    [CrossRef] [PubMed]
  5. A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. De Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
    [CrossRef]
  6. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  7. X. S. Rao and C. K. Ong, “Amplification of evanescent waves in a lossy left-handed material slab,” Phys. Rev. B 68(11), 113103 (2003).
    [CrossRef]
  8. R. E. Collin, Foundations for Microwave Engineering (IEEE Press, 1992).
  9. D. M. Pozar, Microwave Engineering (Wiley, 1998).
  10. R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
    [CrossRef]
  11. B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
    [CrossRef] [PubMed]
  12. M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
    [CrossRef]
  13. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
    [CrossRef]
  14. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
    [CrossRef] [PubMed]
  15. H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
    [CrossRef] [PubMed]
  16. C. Jaekel, C. Waschke, H. G. Roskos, H. Kurz, W. Prusseit, and H. Kinder, “Surface resistance and penetration depth of YBa2Cu3O7−δ thin films on silicon at ultrahigh frequencies,” Appl. Phys. Lett. 64(24), 3326–3328 (1994).
    [CrossRef]
  17. L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
    [CrossRef]
  18. B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett. 87(9), 092503 (2005).
    [CrossRef]
  19. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  20. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [CrossRef]
  21. J. B. Wu, B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
    [CrossRef] [PubMed]
  22. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [CrossRef] [PubMed]
  23. R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [CrossRef] [PubMed]
  24. C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
    [CrossRef]
  25. R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
    [CrossRef] [PubMed]
  26. S. D. Brorson, R. Buhleier, J. O. White, I. E. Trofimov, H. U. Habermeier, and J. Kuhl, “Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy,” Phys. Rev. B Condens. Matter 49(9), 6185–6187 (1994).
    [CrossRef] [PubMed]
  27. M. W. Coffey and J. R. Clem, “Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors,” Phys. Rev. Lett. 67(3), 386–389 (1991).
    [CrossRef] [PubMed]
  28. J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110(5), 1989–1993 (2006).
    [CrossRef] [PubMed]
  29. R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
    [CrossRef]
  30. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
    [CrossRef]

2011 (4)

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[CrossRef]

R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

J. B. Wu, B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[CrossRef] [PubMed]

2010 (7)

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
[CrossRef] [PubMed]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. De Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

2006 (3)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110(5), 1989–1993 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[CrossRef]

B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett. 87(9), 092503 (2005).
[CrossRef]

2004 (1)

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

2003 (1)

X. S. Rao and C. K. Ong, “Amplification of evanescent waves in a lossy left-handed material slab,” Phys. Rev. B 68(11), 113103 (2003).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

1994 (2)

C. Jaekel, C. Waschke, H. G. Roskos, H. Kurz, W. Prusseit, and H. Kinder, “Surface resistance and penetration depth of YBa2Cu3O7−δ thin films on silicon at ultrahigh frequencies,” Appl. Phys. Lett. 64(24), 3326–3328 (1994).
[CrossRef]

S. D. Brorson, R. Buhleier, J. O. White, I. E. Trofimov, H. U. Habermeier, and J. Kuhl, “Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy,” Phys. Rev. B Condens. Matter 49(9), 6185–6187 (1994).
[CrossRef] [PubMed]

1991 (1)

M. W. Coffey and J. R. Clem, “Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors,” Phys. Rev. Lett. 67(3), 386–389 (1991).
[CrossRef] [PubMed]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[CrossRef]

Al-Naib, I. A.

Al-Naib, I. A. I.

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[CrossRef]

Anlage, S. M.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[CrossRef]

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Azad, A. K.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef] [PubMed]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110(5), 1989–1993 (2006).
[CrossRef] [PubMed]

Born, N.

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[CrossRef]

Brorson, S. D.

S. D. Brorson, R. Buhleier, J. O. White, I. E. Trofimov, H. U. Habermeier, and J. Kuhl, “Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy,” Phys. Rev. B Condens. Matter 49(9), 6185–6187 (1994).
[CrossRef] [PubMed]

Buckingham, A. R.

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. De Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[CrossRef]

Buckingham, R.

Buhleier, R.

S. D. Brorson, R. Buhleier, J. O. White, I. E. Trofimov, H. U. Habermeier, and J. Kuhl, “Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy,” Phys. Rev. B Condens. Matter 49(9), 6185–6187 (1994).
[CrossRef] [PubMed]

Cao, C. H.

Cao, W.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Chen, H. T.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, J.

Chen, W.

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110(5), 1989–1993 (2006).
[CrossRef] [PubMed]

Chen, Y.

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
[CrossRef] [PubMed]

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. De Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[CrossRef]

Clem, J. R.

M. W. Coffey and J. R. Clem, “Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors,” Phys. Rev. Lett. 67(3), 386–389 (1991).
[CrossRef] [PubMed]

Coffey, M. W.

M. W. Coffey and J. R. Clem, “Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors,” Phys. Rev. Lett. 67(3), 386–389 (1991).
[CrossRef] [PubMed]

Dahm, T.

B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett. 87(9), 092503 (2005).
[CrossRef]

Dai, H.

de Groot, P.

De Groot, P. A. J.

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. De Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[CrossRef]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

Engelbrecht, S.

Fedotov, V. A.

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
[CrossRef] [PubMed]

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. De Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Grbic, A.

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

Gu, J.

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Habermeier, H. U.

S. D. Brorson, R. Buhleier, J. O. White, I. E. Trofimov, H. U. Habermeier, and J. Kuhl, “Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy,” Phys. Rev. B Condens. Matter 49(9), 6185–6187 (1994).
[CrossRef] [PubMed]

Han, J.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110(5), 1989–1993 (2006).
[CrossRef] [PubMed]

He, M.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Jaekel, C.

C. Jaekel, C. Waschke, H. G. Roskos, H. Kurz, W. Prusseit, and H. Kinder, “Surface resistance and penetration depth of YBa2Cu3O7−δ thin films on silicon at ultrahigh frequencies,” Appl. Phys. Lett. 64(24), 3326–3328 (1994).
[CrossRef]

Jansen, C.

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[CrossRef]

Ji, Z. M.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Jia, Q. X.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef] [PubMed]

Jia, X. Q.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Jin, B. B.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

J. B. Wu, B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[CrossRef] [PubMed]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett. 87(9), 092503 (2005).
[CrossRef]

Kadlec, F.

B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett. 87(9), 092503 (2005).
[CrossRef]

Kang, L.

Kinder, H.

C. Jaekel, C. Waschke, H. G. Roskos, H. Kurz, W. Prusseit, and H. Kinder, “Surface resistance and penetration depth of YBa2Cu3O7−δ thin films on silicon at ultrahigh frequencies,” Appl. Phys. Lett. 64(24), 3326–3328 (1994).
[CrossRef]

Klein, N.

B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett. 87(9), 092503 (2005).
[CrossRef]

Koch, M.

R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[CrossRef]

Kuhl, J.

S. D. Brorson, R. Buhleier, J. O. White, I. E. Trofimov, H. U. Habermeier, and J. Kuhl, “Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy,” Phys. Rev. B Condens. Matter 49(9), 6185–6187 (1994).
[CrossRef] [PubMed]

Kurz, H.

C. Jaekel, C. Waschke, H. G. Roskos, H. Kurz, W. Prusseit, and H. Kinder, “Surface resistance and penetration depth of YBa2Cu3O7−δ thin films on silicon at ultrahigh frequencies,” Appl. Phys. Lett. 64(24), 3326–3328 (1994).
[CrossRef]

Kuzel, P.

B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett. 87(9), 092503 (2005).
[CrossRef]

Liu, X. Y.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Mi, S. B.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

O’Hara, J. F.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef] [PubMed]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

Ong, C. K.

X. S. Rao and C. K. Ong, “Amplification of evanescent waves in a lossy left-handed material slab,” Phys. Rev. B 68(11), 113103 (2003).
[CrossRef]

Orloff, N.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[CrossRef]

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Pimenov, A.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

Pogrebnyakov, A. V.

B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett. 87(9), 092503 (2005).
[CrossRef]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Prusseit, W.

C. Jaekel, C. Waschke, H. G. Roskos, H. Kurz, W. Prusseit, and H. Kinder, “Surface resistance and penetration depth of YBa2Cu3O7−δ thin films on silicon at ultrahigh frequencies,” Appl. Phys. Lett. 64(24), 3326–3328 (1994).
[CrossRef]

Rao, X. S.

X. S. Rao and C. K. Ong, “Amplification of evanescent waves in a lossy left-handed material slab,” Phys. Rev. B 68(11), 113103 (2003).
[CrossRef]

Redwing, J. M.

B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett. 87(9), 092503 (2005).
[CrossRef]

Ricci, M.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Rockstuhl, C.

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[CrossRef]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Roskos, H. G.

C. Jaekel, C. Waschke, H. G. Roskos, H. Kurz, W. Prusseit, and H. Kinder, “Surface resistance and penetration depth of YBa2Cu3O7−δ thin films on silicon at ultrahigh frequencies,” Appl. Phys. Lett. 64(24), 3326–3328 (1994).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shi, J. H.

Singh, R.

R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef] [PubMed]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Taylor, A. J.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef] [PubMed]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Thamizhmani, L.

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110(5), 1989–1993 (2006).
[CrossRef] [PubMed]

Tian, Z.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

Trofimov, I. E.

S. D. Brorson, R. Buhleier, J. O. White, I. E. Trofimov, H. U. Habermeier, and J. Kuhl, “Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy,” Phys. Rev. B Condens. Matter 49(9), 6185–6187 (1994).
[CrossRef] [PubMed]

Trugman, S. A.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef] [PubMed]

Tsiatmas, A.

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. De Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[CrossRef]

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
[CrossRef] [PubMed]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[CrossRef]

Wang, B. G.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Wang, S.

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. De Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[CrossRef]

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
[CrossRef] [PubMed]

Waschke, C.

C. Jaekel, C. Waschke, H. G. Roskos, H. Kurz, W. Prusseit, and H. Kinder, “Surface resistance and penetration depth of YBa2Cu3O7−δ thin films on silicon at ultrahigh frequencies,” Appl. Phys. Lett. 64(24), 3326–3328 (1994).
[CrossRef]

White, J. O.

S. D. Brorson, R. Buhleier, J. O. White, I. E. Trofimov, H. U. Habermeier, and J. Kuhl, “Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy,” Phys. Rev. B Condens. Matter 49(9), 6185–6187 (1994).
[CrossRef] [PubMed]

Wu, J. B.

Wu, P. H.

Wu, Y. J.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Xi, X. X.

B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett. 87(9), 092503 (2005).
[CrossRef]

Xing, Q.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Xu, Q. Y.

Xu, W. W.

Xue, Y. H.

Yang, H.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Zhang, C. H.

Zhang, J. W.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Zhang, L. B.

Zhang, W.

R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110(5), 1989–1993 (2006).
[CrossRef] [PubMed]

Zheludev, N. I.

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
[CrossRef] [PubMed]

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. De Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Zhu, Z.

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110(5), 1989–1993 (2006).
[CrossRef] [PubMed]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (9)

A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. De Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97(11), 111106 (2010).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

C. Jaekel, C. Waschke, H. G. Roskos, H. Kurz, W. Prusseit, and H. Kinder, “Surface resistance and penetration depth of YBa2Cu3O7−δ thin films on silicon at ultrahigh frequencies,” Appl. Phys. Lett. 64(24), 3326–3328 (1994).
[CrossRef]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi, and N. Klein, “Terahertz surface impedance of epitaxial MgB2 thin film,” Appl. Phys. Lett. 87(9), 092503 (2005).
[CrossRef]

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[CrossRef]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[CrossRef]

J. Appl. Phys. (1)

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

J. Phys. Chem. B (1)

J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110(5), 1989–1993 (2006).
[CrossRef] [PubMed]

Nature (1)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

X. S. Rao and C. K. Ong, “Amplification of evanescent waves in a lossy left-handed material slab,” Phys. Rev. B 68(11), 113103 (2003).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

S. D. Brorson, R. Buhleier, J. O. White, I. E. Trofimov, H. U. Habermeier, and J. Kuhl, “Kinetic inductance and penetration depth of thin superconducting films measured by THz-pulse spectroscopy,” Phys. Rev. B Condens. Matter 49(9), 6185–6187 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (6)

M. W. Coffey and J. R. Clem, “Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors,” Phys. Rev. Lett. 67(3), 386–389 (1991).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Other (2)

R. E. Collin, Foundations for Microwave Engineering (IEEE Press, 1992).

D. M. Pozar, Microwave Engineering (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scanning electron microscopy images of superconducting THz metamaterial, where E and H represent the electric field and magnetic fields. (b) Geometry and dimensions of an individual unit cell: orange and gray parts are thin film (NbN) and substrate (MgO), respectively.

Fig. 2
Fig. 2

Transmission spectra of Sample I of the NbN metamaterial at various temperatures, where the inset shows the transmission spectra of Au metamaterial at 8 K and 300 K.

Fig. 3
Fig. 3

The unloaded quality factor (Qu) of NbN MMs at various temperatures when the resonance frequency is around 0.58 THz, 0.81 THz and 1.02 THz at 8 K, respectively.

Fig. 4
Fig. 4

The calculated temperature dependent complex conductivity and surface impedance of 200 nm thick NbN film at 0.6 THz.

Fig. 5
Fig. 5

Transmission minimums of the three NbN MMs at various temperatures. The line is the theoretical results and the dots are experimental results.

Tables (1)

Tables Icon

Table 1 The parameters of the ELC cells and the resonant frequencies fr (All length units are in μm.)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T=| 1+ n s 1+ n s + Z 0 / Z s,eff |,
Z s =( R s +j X s )coth(d/δ)= jω μ 0 σ coth(d/δ),

Metrics