Abstract

The spectral mass-specific scattering cross section σ[PIM](λ) is most important for the remote sensing inversion of the concentration of suspended mineral matter in the coastal ocean. This optical parameter is also important in optical theory and therefore the theoretical limits of this parameter are important. There are differing reports in the literature on the magnitude of σ[PIM](λ) and its spectral slope in different coastal ocean systems. To account for and predict these differences, I have applied a model of the size distribution of primary suspended mineral particles and aggregates of these particles to theoretical calculations of σ[PIM](λ). I utilized a model of mineral particle aggregates by Khelifa and Hill [Khelifa, A. and P.S. Hill, J. Hydraul. Res. 44, 390 (2006)] and Latimer's optical model of aggregates [Latimer, P., Appl. Opt. 24, 3231, (1985)]. I have been able to account for the variations in magnitude and spectral slope of σ[PIM](λ). This analysis will apply to not only inverting the concentration of suspended mineral matter but also provides the basis for inverting the processes of coagulation and aggregation of primary mineral particles in determining sedimentation rates, budgets, etc.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Gould and R. A. Arnone, “Three-dimensional modelling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sens. 19(11), 2141–2159 (1998).
    [CrossRef]
  2. R. W. Gould, R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17(2), 328–341 (2001).
  3. R. W. Gould, Jr., R.H, Stavn, M. S. Twardowski, and G.M. Lamela. “Partitioning optical properties into organic and inorganic components from ocean color imagery,” in Ocean Optics XVI, Santa Fe, New Mexico, USA, S. Ackleson and C. Trees, eds. (Office of Naval Research, 2002) CDROM.
  4. M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43(10), 2156–2162 (2004).
    [CrossRef] [PubMed]
  5. J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100(C7), 13,333–13,344 (1995).
    [CrossRef]
  6. R. H. Stavn and S. J. Richter, “Biogeo-optics: particle optical properties and the partitioning of the spectral scattering coefficient of ocean waters,” Appl. Opt. 47(14), 2660–2679 (2008).
    [CrossRef] [PubMed]
  7. R. H. Stavn and T. R. Keen, “Suspended minerogenic particle distributions in high-energy coastal environments: Optical implications,” J. Geophys. Res. 109(C5), C05005 (2004), doi: (Oceans).
    [CrossRef]
  8. R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, and D. V. Pozdnayakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press 1995).
  9. E. A. Laws and J. W. Archie, “Appropriate use of regression analysis in marine biology,” Mar. Biol. 65(1), 13–16 (1981).
    [CrossRef]
  10. R. A. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003).
    [CrossRef]
  11. I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104(D8), 9423–9444 (1999).
    [CrossRef]
  12. E. Boss, W. Slade, and P. Hill, “Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass,” Opt. Express 17(11), 9408–9420 (2009).
    [CrossRef] [PubMed]
  13. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8C08024), C08024 (2010), doi:.
    [CrossRef] [PubMed]
  14. H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75(15), 2822–2830 (1970).
    [CrossRef]
  15. M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water (Academic/Elsevier 2007).
  16. C. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).
  17. F. Peng, S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Appl. Opt. 46(26), 6577–6594 (2007).
    [CrossRef] [PubMed]
  18. F. Peng, S. Effler, D. O'Donnell, A. Weidemann, and M. T. Auer, “Characterization of minerogenic particles in support of modeling light scattering in Lake Superior through a two-component approach,” Limnol. Oceanogr. 54(4), 1369–1381 (2009).
    [CrossRef]
  19. M. Stramska, D. Stramski, M. Cichocka, A. Cieplak, and S. B. Wozniak, “Effects of atmospheric particles from Southern California on the optical properties of seawater,” J. Geophys. Res. 113(C8), C08037 (2008), doi:.
    [CrossRef]
  20. D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
    [CrossRef]
  21. D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
    [CrossRef]
  22. D. Risović and M. Martinis, “The role of coagulation and sedimentation mechanisms in the two-component model of sea-particle size distribution,” Fizika B: J. Exp. Theoret. Phys. (Zagreb, Croatia) 2, 103–118 (1994).
  23. M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41(4), 744–754 (1996).
    [CrossRef]
  24. D. Risović, “Two component model of sea particle size distribution,” Deep Sea Res. Part I Oceanogr. Res. Pap. 40(7), 1459–1473 (1993).
    [CrossRef]
  25. J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100(C7), 13237–13254 (1995).
    [CrossRef]
  26. O. Ulloa, S. Sathyendranath, T. Platt, and R. A. Quinones, “Light scattering by marine heterotrophic bacteria,” J. Geophys. Res. 97(C6), 9619–9629 (1992).
    [CrossRef]
  27. K. Mahmood, “Lognormal size distribution of particulate matter,” J. Sediment. Petrol. 43(4), 1161–1166 (1973).
  28. D. Deirmendjian, “Scattering and polarizaton properites of water clouds and hazes in the visible and infrared,” Appl. Opt. 3(2), 187–196 (1964).
    [CrossRef]
  29. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elesevier 1969).
  30. W. Zdunkowski, T. Trautman, and A. Bott, Radiation in the Atmosphere: A Course in Theoretical Meterology. (Cambridge 2007).
  31. P. Latimer, “Experimental tests of a theoretical method for predicting light scattering by aggregates,” Appl. Opt. 24(19), 3231–3239 (1985).
    [CrossRef] [PubMed]
  32. A. Khelifa and P. S. Hill, “Models for effective density and settling velocity of flocs,” J. Hydraul. Res. 44(3), 390–401 (2006).
    [CrossRef]
  33. D. Risović and M. Martinis, “Fractal dimensions of suspended particles in seawater,” J. Colloid Interface Sci. 182(1), 199–203 (1996).
    [CrossRef]
  34. A. Morel, “Optics of marine particles and marine optics,” in Particle Size Analysis, S. Demers, ed. (Springer Verlag, 1991), pp. 141–188.
  35. I. N. McCave, “Local and global aspects of the bottom nepheloid layers in the world ocean,” Neth. J. Sea Res. 20(2-3), 167–181 (1986).
    [CrossRef]
  36. P. S. Hill, G. Voulgaris, and J. H. Trowbridge, “Controls on floc size in a continental shelf bottom boundary layer,” J. Geophys. Res. 106(C5), 9543–9549 (2001).
    [CrossRef]
  37. D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci. 67(1-2), 219–230 (2006).
    [CrossRef]
  38. D. M. McKee and A. Cunningham, “Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci. 68(1-2), 305–316 (2006).
    [CrossRef]
  39. R. W. Gould, R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38(12), 2377–2383 (1999).
    [CrossRef] [PubMed]
  40. M. Sydor and R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36(27), 6905–6912 (1997).
    [CrossRef] [PubMed]
  41. D. M. Etter, Fortran 77: with Numerical Methods for Engineers and Scientists (Benjamin/Cummings 1992).
  42. O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Enviorn. Geol. 34(4), 257–269 (1998).
    [CrossRef]
  43. J. Buffle and G. G. Leppard, “Characterization of aquatic colloids and macromolecules. 1. structure and behavior of colloidal material,” Environ. Sci. Technol. 29(9), 2169–2175 (1995).
    [CrossRef]
  44. C. L. Gallegos and R. G. Menzel, “Submicron size distribution of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23(4), 596–602 (1987).
    [CrossRef]
  45. Q. Jiang and B. E. Logan, “Fractal dimensions of aggregates determined from steady-state size distributions,” Environ. Sci. Technol. 25(12), 2031–2038 (1991).
    [CrossRef]
  46. T. A. Witten and M. E. Cates, “Tenuous structures from disorderly growth processes,” Science 232(4758), 1607–1612 (1986).
    [CrossRef] [PubMed]
  47. L. J. Doyle and T. N. Sparks, “Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental shelf,” J. Sediment. Petrol. 50, 905–916 (1980).
  48. W.G. Egan and T.W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic 1979).
  49. P. Fleischer, “Mineralogy and sedimentation history, Santa Barbara basin, California,” J. Sediment. Petrol. 42(1), 49–58 (1972).
  50. A. G. Johnson and J. T. Kelley, “Temporal, spatial, and textural variation in the mineralogy of Mississippi river suspended sediment,” J. Sediment. Petrol. 54, 67–72 (1984).
  51. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley 1983).
  52. J. B. Austin, “Methods of representing distribution of particle size,” Ind. Eng. Chem. Anal. Ed. 11(6), 334–339 (1939).
    [CrossRef]
  53. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
    [CrossRef]
  54. C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24(19), 3791–3806 (2003).
    [CrossRef]
  55. A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103(C11), 24955–24968 (1998).
    [CrossRef]
  56. H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46(6), 1438–1454 (2001).
    [CrossRef]

2010 (1)

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8C08024), C08024 (2010), doi:.
[CrossRef] [PubMed]

2009 (2)

E. Boss, W. Slade, and P. Hill, “Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass,” Opt. Express 17(11), 9408–9420 (2009).
[CrossRef] [PubMed]

F. Peng, S. Effler, D. O'Donnell, A. Weidemann, and M. T. Auer, “Characterization of minerogenic particles in support of modeling light scattering in Lake Superior through a two-component approach,” Limnol. Oceanogr. 54(4), 1369–1381 (2009).
[CrossRef]

2008 (2)

M. Stramska, D. Stramski, M. Cichocka, A. Cieplak, and S. B. Wozniak, “Effects of atmospheric particles from Southern California on the optical properties of seawater,” J. Geophys. Res. 113(C8), C08037 (2008), doi:.
[CrossRef]

R. H. Stavn and S. J. Richter, “Biogeo-optics: particle optical properties and the partitioning of the spectral scattering coefficient of ocean waters,” Appl. Opt. 47(14), 2660–2679 (2008).
[CrossRef] [PubMed]

2007 (2)

D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
[CrossRef]

F. Peng, S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Appl. Opt. 46(26), 6577–6594 (2007).
[CrossRef] [PubMed]

2006 (3)

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci. 67(1-2), 219–230 (2006).
[CrossRef]

D. M. McKee and A. Cunningham, “Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci. 68(1-2), 305–316 (2006).
[CrossRef]

A. Khelifa and P. S. Hill, “Models for effective density and settling velocity of flocs,” J. Hydraul. Res. 44(3), 390–401 (2006).
[CrossRef]

2004 (3)

D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
[CrossRef]

R. H. Stavn and T. R. Keen, “Suspended minerogenic particle distributions in high-energy coastal environments: Optical implications,” J. Geophys. Res. 109(C5), C05005 (2004), doi: (Oceans).
[CrossRef]

M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43(10), 2156–2162 (2004).
[CrossRef] [PubMed]

2003 (2)

R. A. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24(19), 3791–3806 (2003).
[CrossRef]

2001 (3)

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46(6), 1438–1454 (2001).
[CrossRef]

P. S. Hill, G. Voulgaris, and J. H. Trowbridge, “Controls on floc size in a continental shelf bottom boundary layer,” J. Geophys. Res. 106(C5), 9543–9549 (2001).
[CrossRef]

R. W. Gould, R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17(2), 328–341 (2001).

1999 (2)

I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104(D8), 9423–9444 (1999).
[CrossRef]

R. W. Gould, R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38(12), 2377–2383 (1999).
[CrossRef] [PubMed]

1998 (3)

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Enviorn. Geol. 34(4), 257–269 (1998).
[CrossRef]

R. W. Gould and R. A. Arnone, “Three-dimensional modelling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sens. 19(11), 2141–2159 (1998).
[CrossRef]

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103(C11), 24955–24968 (1998).
[CrossRef]

1997 (1)

1996 (3)

D. Risović and M. Martinis, “Fractal dimensions of suspended particles in seawater,” J. Colloid Interface Sci. 182(1), 199–203 (1996).
[CrossRef]

M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41(4), 744–754 (1996).
[CrossRef]

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[CrossRef]

1995 (3)

J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100(C7), 13237–13254 (1995).
[CrossRef]

J. Buffle and G. G. Leppard, “Characterization of aquatic colloids and macromolecules. 1. structure and behavior of colloidal material,” Environ. Sci. Technol. 29(9), 2169–2175 (1995).
[CrossRef]

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100(C7), 13,333–13,344 (1995).
[CrossRef]

1994 (1)

D. Risović and M. Martinis, “The role of coagulation and sedimentation mechanisms in the two-component model of sea-particle size distribution,” Fizika B: J. Exp. Theoret. Phys. (Zagreb, Croatia) 2, 103–118 (1994).

1993 (1)

D. Risović, “Two component model of sea particle size distribution,” Deep Sea Res. Part I Oceanogr. Res. Pap. 40(7), 1459–1473 (1993).
[CrossRef]

1992 (1)

O. Ulloa, S. Sathyendranath, T. Platt, and R. A. Quinones, “Light scattering by marine heterotrophic bacteria,” J. Geophys. Res. 97(C6), 9619–9629 (1992).
[CrossRef]

1991 (1)

Q. Jiang and B. E. Logan, “Fractal dimensions of aggregates determined from steady-state size distributions,” Environ. Sci. Technol. 25(12), 2031–2038 (1991).
[CrossRef]

1987 (1)

C. L. Gallegos and R. G. Menzel, “Submicron size distribution of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23(4), 596–602 (1987).
[CrossRef]

1986 (2)

I. N. McCave, “Local and global aspects of the bottom nepheloid layers in the world ocean,” Neth. J. Sea Res. 20(2-3), 167–181 (1986).
[CrossRef]

T. A. Witten and M. E. Cates, “Tenuous structures from disorderly growth processes,” Science 232(4758), 1607–1612 (1986).
[CrossRef] [PubMed]

1985 (1)

1984 (1)

A. G. Johnson and J. T. Kelley, “Temporal, spatial, and textural variation in the mineralogy of Mississippi river suspended sediment,” J. Sediment. Petrol. 54, 67–72 (1984).

1981 (2)

C. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

E. A. Laws and J. W. Archie, “Appropriate use of regression analysis in marine biology,” Mar. Biol. 65(1), 13–16 (1981).
[CrossRef]

1980 (1)

L. J. Doyle and T. N. Sparks, “Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental shelf,” J. Sediment. Petrol. 50, 905–916 (1980).

1973 (1)

K. Mahmood, “Lognormal size distribution of particulate matter,” J. Sediment. Petrol. 43(4), 1161–1166 (1973).

1972 (1)

P. Fleischer, “Mineralogy and sedimentation history, Santa Barbara basin, California,” J. Sediment. Petrol. 42(1), 49–58 (1972).

1970 (1)

H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75(15), 2822–2830 (1970).
[CrossRef]

1964 (1)

1939 (1)

J. B. Austin, “Methods of representing distribution of particle size,” Ind. Eng. Chem. Anal. Ed. 11(6), 334–339 (1939).
[CrossRef]

Aas, E.

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[CrossRef]

Adatte, T.

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Enviorn. Geol. 34(4), 257–269 (1998).
[CrossRef]

Archie, J. W.

E. A. Laws and J. W. Archie, “Appropriate use of regression analysis in marine biology,” Mar. Biol. 65(1), 13–16 (1981).
[CrossRef]

Arnone, R. A.

M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43(10), 2156–2162 (2004).
[CrossRef] [PubMed]

R. W. Gould, R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17(2), 328–341 (2001).

R. W. Gould, R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38(12), 2377–2383 (1999).
[CrossRef] [PubMed]

R. W. Gould and R. A. Arnone, “Three-dimensional modelling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sens. 19(11), 2141–2159 (1998).
[CrossRef]

M. Sydor and R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36(27), 6905–6912 (1997).
[CrossRef] [PubMed]

Atteia, O.

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Enviorn. Geol. 34(4), 257–269 (1998).
[CrossRef]

Auer, M. T.

F. Peng, S. Effler, D. O'Donnell, A. Weidemann, and M. T. Auer, “Characterization of minerogenic particles in support of modeling light scattering in Lake Superior through a two-component approach,” Limnol. Oceanogr. 54(4), 1369–1381 (2009).
[CrossRef]

Austin, J. B.

J. B. Austin, “Methods of representing distribution of particle size,” Ind. Eng. Chem. Anal. Ed. 11(6), 334–339 (1939).
[CrossRef]

Babin, M.

D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
[CrossRef]

Bader, H.

H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75(15), 2822–2830 (1970).
[CrossRef]

Barnard, A. H.

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103(C11), 24955–24968 (1998).
[CrossRef]

Binding, C. E.

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci. 67(1-2), 219–230 (2006).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24(19), 3791–3806 (2003).
[CrossRef]

Boss, E.

Bowers, D. G.

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci. 67(1-2), 219–230 (2006).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24(19), 3791–3806 (2003).
[CrossRef]

Brun-Cottan, J. C.

C. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

Buffle, J.

J. Buffle and G. G. Leppard, “Characterization of aquatic colloids and macromolecules. 1. structure and behavior of colloidal material,” Environ. Sci. Technol. 29(9), 2169–2175 (1995).
[CrossRef]

Campbell, J. W.

J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100(C7), 13237–13254 (1995).
[CrossRef]

Cates, M. E.

T. A. Witten and M. E. Cates, “Tenuous structures from disorderly growth processes,” Science 232(4758), 1607–1612 (1986).
[CrossRef] [PubMed]

Chesselet, R.

C. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

Cichocka, M.

M. Stramska, D. Stramski, M. Cichocka, A. Cieplak, and S. B. Wozniak, “Effects of atmospheric particles from Southern California on the optical properties of seawater,” J. Geophys. Res. 113(C8), C08037 (2008), doi:.
[CrossRef]

Cieplak, A.

M. Stramska, D. Stramski, M. Cichocka, A. Cieplak, and S. B. Wozniak, “Effects of atmospheric particles from Southern California on the optical properties of seawater,” J. Geophys. Res. 113(C8), C08037 (2008), doi:.
[CrossRef]

Cleveland, J. S.

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100(C7), 13,333–13,344 (1995).
[CrossRef]

Cunningham, A.

D. M. McKee and A. Cunningham, “Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci. 68(1-2), 305–316 (2006).
[CrossRef]

Deirmendjian, D.

Doyle, L. J.

L. J. Doyle and T. N. Sparks, “Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental shelf,” J. Sediment. Petrol. 50, 905–916 (1980).

Du, T.

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46(6), 1438–1454 (2001).
[CrossRef]

Effler, S.

F. Peng, S. Effler, D. O'Donnell, A. Weidemann, and M. T. Auer, “Characterization of minerogenic particles in support of modeling light scattering in Lake Superior through a two-component approach,” Limnol. Oceanogr. 54(4), 1369–1381 (2009).
[CrossRef]

Effler, S. W.

Flatau, P. J.

D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
[CrossRef]

Fleischer, P.

P. Fleischer, “Mineralogy and sedimentation history, Santa Barbara basin, California,” J. Sediment. Petrol. 42(1), 49–58 (1972).

Fournier, G.

M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41(4), 744–754 (1996).
[CrossRef]

Gallegos, C. L.

C. L. Gallegos and R. G. Menzel, “Submicron size distribution of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23(4), 596–602 (1987).
[CrossRef]

Goode, W.

Gordon, H. R.

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46(6), 1438–1454 (2001).
[CrossRef]

Gould, R. W.

M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43(10), 2156–2162 (2004).
[CrossRef] [PubMed]

R. W. Gould, R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17(2), 328–341 (2001).

R. W. Gould, R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38(12), 2377–2383 (1999).
[CrossRef] [PubMed]

R. W. Gould and R. A. Arnone, “Three-dimensional modelling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sens. 19(11), 2141–2159 (1998).
[CrossRef]

Green, R. A.

R. A. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003).
[CrossRef]

Haltrin, V. I.

Hill, P.

Hill, P. S.

A. Khelifa and P. S. Hill, “Models for effective density and settling velocity of flocs,” J. Hydraul. Res. 44(3), 390–401 (2006).
[CrossRef]

P. S. Hill, G. Voulgaris, and J. H. Trowbridge, “Controls on floc size in a continental shelf bottom boundary layer,” J. Geophys. Res. 106(C5), 9543–9549 (2001).
[CrossRef]

Jehanno, C.

C. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

Jiang, Q.

Q. Jiang and B. E. Logan, “Fractal dimensions of aggregates determined from steady-state size distributions,” Environ. Sci. Technol. 25(12), 2031–2038 (1991).
[CrossRef]

Johnson, A. G.

A. G. Johnson and J. T. Kelley, “Temporal, spatial, and textural variation in the mineralogy of Mississippi river suspended sediment,” J. Sediment. Petrol. 54, 67–72 (1984).

Jonasz, M.

M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41(4), 744–754 (1996).
[CrossRef]

Keen, T. R.

R. H. Stavn and T. R. Keen, “Suspended minerogenic particle distributions in high-energy coastal environments: Optical implications,” J. Geophys. Res. 109(C5), C05005 (2004), doi: (Oceans).
[CrossRef]

Kelley, J. T.

A. G. Johnson and J. T. Kelley, “Temporal, spatial, and textural variation in the mineralogy of Mississippi river suspended sediment,” J. Sediment. Petrol. 54, 67–72 (1984).

Khelifa, A.

A. Khelifa and P. S. Hill, “Models for effective density and settling velocity of flocs,” J. Hydraul. Res. 44(3), 390–401 (2006).
[CrossRef]

Kozel, R.

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Enviorn. Geol. 34(4), 257–269 (1998).
[CrossRef]

Lambert, C.

C. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

Latimer, P.

Laws, E. A.

E. A. Laws and J. W. Archie, “Appropriate use of regression analysis in marine biology,” Mar. Biol. 65(1), 13–16 (1981).
[CrossRef]

Leppard, G. G.

J. Buffle and G. G. Leppard, “Characterization of aquatic colloids and macromolecules. 1. structure and behavior of colloidal material,” Environ. Sci. Technol. 29(9), 2169–2175 (1995).
[CrossRef]

Logan, B. E.

Q. Jiang and B. E. Logan, “Fractal dimensions of aggregates determined from steady-state size distributions,” Environ. Sci. Technol. 25(12), 2031–2038 (1991).
[CrossRef]

Mahmood, K.

K. Mahmood, “Lognormal size distribution of particulate matter,” J. Sediment. Petrol. 43(4), 1161–1166 (1973).

Martinis, M.

D. Risović and M. Martinis, “Fractal dimensions of suspended particles in seawater,” J. Colloid Interface Sci. 182(1), 199–203 (1996).
[CrossRef]

D. Risović and M. Martinis, “The role of coagulation and sedimentation mechanisms in the two-component model of sea-particle size distribution,” Fizika B: J. Exp. Theoret. Phys. (Zagreb, Croatia) 2, 103–118 (1994).

Martinolich, P. M.

McCave, I. N.

I. N. McCave, “Local and global aspects of the bottom nepheloid layers in the world ocean,” Neth. J. Sea Res. 20(2-3), 167–181 (1986).
[CrossRef]

McKee, D. M.

D. M. McKee and A. Cunningham, “Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci. 68(1-2), 305–316 (2006).
[CrossRef]

Menzel, R. G.

C. L. Gallegos and R. G. Menzel, “Submicron size distribution of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23(4), 596–602 (1987).
[CrossRef]

Mitchelson-Jacob, E. G.

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24(19), 3791–3806 (2003).
[CrossRef]

O’Donnell, D.

O'Donnell, D.

F. Peng, S. Effler, D. O'Donnell, A. Weidemann, and M. T. Auer, “Characterization of minerogenic particles in support of modeling light scattering in Lake Superior through a two-component approach,” Limnol. Oceanogr. 54(4), 1369–1381 (2009).
[CrossRef]

Olson, R. J.

R. A. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003).
[CrossRef]

Pegau, W. S.

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103(C11), 24955–24968 (1998).
[CrossRef]

Peng, F.

F. Peng, S. Effler, D. O'Donnell, A. Weidemann, and M. T. Auer, “Characterization of minerogenic particles in support of modeling light scattering in Lake Superior through a two-component approach,” Limnol. Oceanogr. 54(4), 1369–1381 (2009).
[CrossRef]

F. Peng, S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Appl. Opt. 46(26), 6577–6594 (2007).
[CrossRef] [PubMed]

Perkins, M. G.

Perret, D.

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Enviorn. Geol. 34(4), 257–269 (1998).
[CrossRef]

Platt, T.

O. Ulloa, S. Sathyendranath, T. Platt, and R. A. Quinones, “Light scattering by marine heterotrophic bacteria,” J. Geophys. Res. 97(C6), 9619–9629 (1992).
[CrossRef]

Quinones, R. A.

O. Ulloa, S. Sathyendranath, T. Platt, and R. A. Quinones, “Light scattering by marine heterotrophic bacteria,” J. Geophys. Res. 97(C6), 9619–9629 (1992).
[CrossRef]

Reynolds, R. A.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8C08024), C08024 (2010), doi:.
[CrossRef] [PubMed]

Richter, S. J.

Risovic, D.

D. Risović and M. Martinis, “Fractal dimensions of suspended particles in seawater,” J. Colloid Interface Sci. 182(1), 199–203 (1996).
[CrossRef]

D. Risović and M. Martinis, “The role of coagulation and sedimentation mechanisms in the two-component model of sea-particle size distribution,” Fizika B: J. Exp. Theoret. Phys. (Zagreb, Croatia) 2, 103–118 (1994).

D. Risović, “Two component model of sea particle size distribution,” Deep Sea Res. Part I Oceanogr. Res. Pap. 40(7), 1459–1473 (1993).
[CrossRef]

Rossi, P.

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Enviorn. Geol. 34(4), 257–269 (1998).
[CrossRef]

Sathyendranath, S.

O. Ulloa, S. Sathyendranath, T. Platt, and R. A. Quinones, “Light scattering by marine heterotrophic bacteria,” J. Geophys. Res. 97(C6), 9619–9629 (1992).
[CrossRef]

Silverberg, N.

C. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

Slade, W.

Sokolik, I. N.

I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104(D8), 9423–9444 (1999).
[CrossRef]

Sosik, H. M.

R. A. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003).
[CrossRef]

Sparks, T. N.

L. J. Doyle and T. N. Sparks, “Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental shelf,” J. Sediment. Petrol. 50, 905–916 (1980).

Stavn, R. H.

R. H. Stavn and S. J. Richter, “Biogeo-optics: particle optical properties and the partitioning of the spectral scattering coefficient of ocean waters,” Appl. Opt. 47(14), 2660–2679 (2008).
[CrossRef] [PubMed]

R. H. Stavn and T. R. Keen, “Suspended minerogenic particle distributions in high-energy coastal environments: Optical implications,” J. Geophys. Res. 109(C5), C05005 (2004), doi: (Oceans).
[CrossRef]

Stramska, M.

M. Stramska, D. Stramski, M. Cichocka, A. Cieplak, and S. B. Wozniak, “Effects of atmospheric particles from Southern California on the optical properties of seawater,” J. Geophys. Res. 113(C8), C08037 (2008), doi:.
[CrossRef]

Stramski, D.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8C08024), C08024 (2010), doi:.
[CrossRef] [PubMed]

M. Stramska, D. Stramski, M. Cichocka, A. Cieplak, and S. B. Wozniak, “Effects of atmospheric particles from Southern California on the optical properties of seawater,” J. Geophys. Res. 113(C8), C08037 (2008), doi:.
[CrossRef]

D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
[CrossRef]

D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
[CrossRef]

Sydor, M.

Toon, O. B.

I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104(D8), 9423–9444 (1999).
[CrossRef]

Trowbridge, J. H.

P. S. Hill, G. Voulgaris, and J. H. Trowbridge, “Controls on floc size in a continental shelf bottom boundary layer,” J. Geophys. Res. 106(C5), 9543–9549 (2001).
[CrossRef]

Ulloa, O.

O. Ulloa, S. Sathyendranath, T. Platt, and R. A. Quinones, “Light scattering by marine heterotrophic bacteria,” J. Geophys. Res. 97(C6), 9619–9629 (1992).
[CrossRef]

Voulgaris, G.

P. S. Hill, G. Voulgaris, and J. H. Trowbridge, “Controls on floc size in a continental shelf bottom boundary layer,” J. Geophys. Res. 106(C5), 9543–9549 (2001).
[CrossRef]

Weidemann, A.

F. Peng, S. Effler, D. O'Donnell, A. Weidemann, and M. T. Auer, “Characterization of minerogenic particles in support of modeling light scattering in Lake Superior through a two-component approach,” Limnol. Oceanogr. 54(4), 1369–1381 (2009).
[CrossRef]

F. Peng, S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Appl. Opt. 46(26), 6577–6594 (2007).
[CrossRef] [PubMed]

Witten, T. A.

T. A. Witten and M. E. Cates, “Tenuous structures from disorderly growth processes,” Science 232(4758), 1607–1612 (1986).
[CrossRef] [PubMed]

Wozniak, S. B.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8C08024), C08024 (2010), doi:.
[CrossRef] [PubMed]

M. Stramska, D. Stramski, M. Cichocka, A. Cieplak, and S. B. Wozniak, “Effects of atmospheric particles from Southern California on the optical properties of seawater,” J. Geophys. Res. 113(C8), C08037 (2008), doi:.
[CrossRef]

D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
[CrossRef]

D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
[CrossRef]

Wright, V. M.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8C08024), C08024 (2010), doi:.
[CrossRef] [PubMed]

Zaneveld, J. R. V.

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103(C11), 24955–24968 (1998).
[CrossRef]

Appl. Opt. (7)

Deep Sea Res. Part I Oceanogr. Res. Pap. (1)

D. Risović, “Two component model of sea particle size distribution,” Deep Sea Res. Part I Oceanogr. Res. Pap. 40(7), 1459–1473 (1993).
[CrossRef]

Enviorn. Geol. (1)

O. Atteia, D. Perret, T. Adatte, R. Kozel, and P. Rossi, “Characterization of natural colloids from a river and spring in a karstic basin,” Enviorn. Geol. 34(4), 257–269 (1998).
[CrossRef]

Environ. Sci. Technol. (2)

J. Buffle and G. G. Leppard, “Characterization of aquatic colloids and macromolecules. 1. structure and behavior of colloidal material,” Environ. Sci. Technol. 29(9), 2169–2175 (1995).
[CrossRef]

Q. Jiang and B. E. Logan, “Fractal dimensions of aggregates determined from steady-state size distributions,” Environ. Sci. Technol. 25(12), 2031–2038 (1991).
[CrossRef]

Estuar. Coast. Shelf Sci. (2)

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci. 67(1-2), 219–230 (2006).
[CrossRef]

D. M. McKee and A. Cunningham, “Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci. 68(1-2), 305–316 (2006).
[CrossRef]

Fizika B: J. Exp. Theoret. Phys. (Zagreb, Croatia) (1)

D. Risović and M. Martinis, “The role of coagulation and sedimentation mechanisms in the two-component model of sea-particle size distribution,” Fizika B: J. Exp. Theoret. Phys. (Zagreb, Croatia) 2, 103–118 (1994).

Ind. Eng. Chem. Anal. Ed. (1)

J. B. Austin, “Methods of representing distribution of particle size,” Ind. Eng. Chem. Anal. Ed. 11(6), 334–339 (1939).
[CrossRef]

Int. J. Remote Sens. (2)

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Remote Sens. 24(19), 3791–3806 (2003).
[CrossRef]

R. W. Gould and R. A. Arnone, “Three-dimensional modelling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sens. 19(11), 2141–2159 (1998).
[CrossRef]

J. Coast. Res. (1)

R. W. Gould, R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17(2), 328–341 (2001).

J. Colloid Interface Sci. (1)

D. Risović and M. Martinis, “Fractal dimensions of suspended particles in seawater,” J. Colloid Interface Sci. 182(1), 199–203 (1996).
[CrossRef]

J. Geophys. Res. (10)

J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100(C7), 13237–13254 (1995).
[CrossRef]

O. Ulloa, S. Sathyendranath, T. Platt, and R. A. Quinones, “Light scattering by marine heterotrophic bacteria,” J. Geophys. Res. 97(C6), 9619–9629 (1992).
[CrossRef]

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100(C7), 13,333–13,344 (1995).
[CrossRef]

R. H. Stavn and T. R. Keen, “Suspended minerogenic particle distributions in high-energy coastal environments: Optical implications,” J. Geophys. Res. 109(C5), C05005 (2004), doi: (Oceans).
[CrossRef]

M. Stramska, D. Stramski, M. Cichocka, A. Cieplak, and S. B. Wozniak, “Effects of atmospheric particles from Southern California on the optical properties of seawater,” J. Geophys. Res. 113(C8), C08037 (2008), doi:.
[CrossRef]

I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104(D8), 9423–9444 (1999).
[CrossRef]

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8C08024), C08024 (2010), doi:.
[CrossRef] [PubMed]

H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75(15), 2822–2830 (1970).
[CrossRef]

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103(C11), 24955–24968 (1998).
[CrossRef]

P. S. Hill, G. Voulgaris, and J. H. Trowbridge, “Controls on floc size in a continental shelf bottom boundary layer,” J. Geophys. Res. 106(C5), 9543–9549 (2001).
[CrossRef]

J. Hydraul. Res. (1)

A. Khelifa and P. S. Hill, “Models for effective density and settling velocity of flocs,” J. Hydraul. Res. 44(3), 390–401 (2006).
[CrossRef]

J. Mar. Res. (1)

C. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).

J. Plankton Res. (1)

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[CrossRef]

J. Sediment. Petrol. (4)

P. Fleischer, “Mineralogy and sedimentation history, Santa Barbara basin, California,” J. Sediment. Petrol. 42(1), 49–58 (1972).

A. G. Johnson and J. T. Kelley, “Temporal, spatial, and textural variation in the mineralogy of Mississippi river suspended sediment,” J. Sediment. Petrol. 54, 67–72 (1984).

L. J. Doyle and T. N. Sparks, “Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental shelf,” J. Sediment. Petrol. 50, 905–916 (1980).

K. Mahmood, “Lognormal size distribution of particulate matter,” J. Sediment. Petrol. 43(4), 1161–1166 (1973).

Limnol. Oceanogr. (6)

M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41(4), 744–754 (1996).
[CrossRef]

D. Stramski, S. B. Wozniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
[CrossRef]

D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
[CrossRef]

F. Peng, S. Effler, D. O'Donnell, A. Weidemann, and M. T. Auer, “Characterization of minerogenic particles in support of modeling light scattering in Lake Superior through a two-component approach,” Limnol. Oceanogr. 54(4), 1369–1381 (2009).
[CrossRef]

R. A. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003).
[CrossRef]

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46(6), 1438–1454 (2001).
[CrossRef]

Mar. Biol. (1)

E. A. Laws and J. W. Archie, “Appropriate use of regression analysis in marine biology,” Mar. Biol. 65(1), 13–16 (1981).
[CrossRef]

Neth. J. Sea Res. (1)

I. N. McCave, “Local and global aspects of the bottom nepheloid layers in the world ocean,” Neth. J. Sea Res. 20(2-3), 167–181 (1986).
[CrossRef]

Opt. Express (1)

Science (1)

T. A. Witten and M. E. Cates, “Tenuous structures from disorderly growth processes,” Science 232(4758), 1607–1612 (1986).
[CrossRef] [PubMed]

Water Resour. Res. (1)

C. L. Gallegos and R. G. Menzel, “Submicron size distribution of inorganic suspended solids in turbid waters by photon correlation spectroscopy,” Water Resour. Res. 23(4), 596–602 (1987).
[CrossRef]

Other (9)

D. M. Etter, Fortran 77: with Numerical Methods for Engineers and Scientists (Benjamin/Cummings 1992).

W.G. Egan and T.W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic 1979).

C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley 1983).

M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water (Academic/Elsevier 2007).

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, and D. V. Pozdnayakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press 1995).

R. W. Gould, Jr., R.H, Stavn, M. S. Twardowski, and G.M. Lamela. “Partitioning optical properties into organic and inorganic components from ocean color imagery,” in Ocean Optics XVI, Santa Fe, New Mexico, USA, S. Ackleson and C. Trees, eds. (Office of Naval Research, 2002) CDROM.

A. Morel, “Optics of marine particles and marine optics,” in Particle Size Analysis, S. Demers, ed. (Springer Verlag, 1991), pp. 141–188.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elesevier 1969).

W. Zdunkowski, T. Trautman, and A. Bott, Radiation in the Atmosphere: A Course in Theoretical Meterology. (Cambridge 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Particle size distribution for primary mineral particle dominated PSD. The ratio of small particles to large in this model is NA/NB = 1.55. The parameters of the Two-component Mineral Model applied here are: CA = 6.0 x 1023, CB = 1.55 x 1012, μA = 3.2, μB = 5.0, γA = 0.12, γB = 2.35

Fig. 2
Fig. 2

Particle size distribution for equivalent primary and aggregated mineral PSD. The ratio of small particles to large in this model is NA/NB = 0.42. The parameters of the Two-component Model applied here are: CA = 6.0 x 1022, CB = 1.75 x 1012, μA = 3.2, μB = 5.0, γA = 0.15, γB = 2.35

Fig. 3
Fig. 3

Particle size distribution for mineral aggregate dominated PSD. The ratio of small particles to large in this model is NA/NB = 0.135. The parameters of the distribution applied here are: CA = 6.0 x 1023, CB = 1.75 x 1013, μA = 3.2, μB = 5.0, γA = 0.12, γB = 2.35

Fig. 4
Fig. 4

Mass-specific scattering cross sections for primary particle dominated PSD compared to Mobile Bay, Alabama, USA results (Stavn and Richter, 2008). Results from Montmorillonite and Illite aggregate models determined at low, median, and high fractal dimensions.

Fig. 5
Fig. 5

Mass-specific scattering cross sections for primary and aggregate co-dominant PSD and compared to Southwest Pass, mouth of the Mississippi, USA data (Stavn and Richter, 2008). Results from Montmorillonite and Illite aggregate models determined at low, median, and high fractal dimensions.

Fig. 6
Fig. 6

Mass-specific scattering cross sections for aggregate dominated PSD compared with results from the Irish Sea (Bowers and Binding, 2006, McKee and Cunningham, 2006). Results from Montmorillonite and Illite aggregate models determined at low, median, and high fractal dimensions.

Tables (2)

Tables Icon

Table 2 Relative Refractive Indices of Clay Minerals. Real Component n and Imaginary Component n’

Tables Icon

Table 1 Coastal Two-Component Mineral Model Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dN( r )=C r m( r ) dr,
dN( r )= C A F A ( r )dr+ C B F B ( r )dr, F A ( r )= r μ A exp( b A r γ A ), F B ( r )= r μ B exp( b B r γ B ),
N A i = C A Δ/2 +Δr/2 F A ( r i )dr= C A Δ/2 +Δr/2 r i μ A e b A r i γ A dr , N A = i N A i ,
N B i = C B Δ/2 +Δr/2 F B ( r i )dr= C B Δ/2 +Δr/2 r i μ B e b B r i γB dr , N B = i N B i ,
N T = N A + N B ,
F=α ( D f d ) β ,
ρ r ρ w =( ρ s ρ w ) ( D f d ) F3 ,
σ [PIM] ( λ )= i j [ σ m ( λ ) ρ m v m ] ij ,

Metrics