Abstract

We consider the effect of reducing the density of final hole states for Auger processes on the Auger rate at room temperature and 77K at densities near lasing thresholds. The system of interest is a strain-compensated superlattice based on the InAs/GaInSb material system with a 3.7 μm band gap. At 77K the Auger lifetime is reduced by two orders of magnitude, while the change at 300K is less than a factor of two. We conclude that final-state optimization in this particular structure, while pronounced at 77K, has little effect at 300K.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch and E. O. Kane, "Reduction of Lasing Threshold Current Density by the Lowering of Valence Band Effective Mass", J. Lightwave Technol. LT- 4, 504 (1986).
    [CrossRef]
  2. e.g. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  3. T. C. Hasenberg, R. H. Miles, A. R. Kost, and L. West, "Recent advances in Sb-based midwaveinfrared lasers", J. Quantum Electron. QE-33, 1403 (1997).
    [CrossRef]
  4. D. H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, and L. West, "Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices", Appl. Phys. Lett. 67, 3700 (1995).
    [CrossRef]
  5. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, "Type II quantum-well lasers for the mid-wavelength infrared", Appl. Phys. Lett. 67, 757 (1995).
    [CrossRef]
  6. H. K. Choi, G. W. Turner, and M. J. Manfra, "High CW power (>200mW/facet) at 3.4µm from InAsSb/InAlAsSb strained quantum well diode lasers", Electron. Lett. 32, 1296 (1996).
    [CrossRef]
  7. H. K. Choi, G. W. Turner, M. J. Manfra, and M. K. Connors, "175K continuous wave operation of InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5µm", Appl. Phys. Lett. 68, 2936 (1996).
    [CrossRef]
  8. S. R. Kurtz, R. M. Biefeld, A. A. Allerman, A. J. Howard, M. H. Crawford, and M. W. Pelczynski, "Pseudomorphic InAsSb multiple quantum well injection laser emitting at 3.5 µm", Appl. Phys. Lett. 68, 1332 (1996).
    [CrossRef]
  9. M. E. Flatte', J. T. Olesberg, S. A. Anson, T. F. Boggess, T. C. Hasenberg, R. H. Miles, and C. H. Grein, "Theoretical Performance of Mid-Infrared Broken-Gap Multilayer Superlattice Lasers", Appl. Phys. Lett. 70, 3212 (1997). The layer widths of the four-layer superlattice given in this reference are in error. In fact they should be the same as those of the superlattice considered here.
    [CrossRef]
  10. M. E. Flatte', C. H. Grein, and H. Ehrenreich, "Sensitivity of optimization of mid-infrared InAs/InGaSb laser active regions to temperature and composition variations", Appl. Phys. Lett. in press.
  11. C. H. Grein, P. M. Young, M. E. Flatte', and H. Ehrenreich, "Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes", J. Appl. Phys. 78, 7143 (1995).
    [CrossRef]
  12. M. E. Flatte', C. H. Grein, H. Ehrenreich, R. H. Miles, and H. Cruz, "Theoretical performance limits of 2:1
    [CrossRef]
  13. M. E. Flatte', P. M. Young, L.-H. Peng, and H. Ehrenreich, "Generalized superlattice K p theory and intersubband optical transitions", Phys. Rev. B 53, 1963 (1996).
    [CrossRef]
  14. O. Madelung, in Semiconductors, Physics of Group IV Elements and III-V Compounds, edited by K.-H. Helluege and O. Madelung, Landolt-Boernstein, New Series, Group III, Vol. 17, Pt. a (Springer-Verlag, Berlin, 1982).
  15. O. Madelung in Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds, edited by K.-H. Helluege and O. Madelung, Landolt-Boernstein, New Series, Group III, Vol. 22, Pt. a (Springer-Verlag, Berlin, 1987).
  16. M. E. Flatte', C. H. Grein, T. C. Hasenberg, S. A. Anson, D.-J. Jang, J. T. Olesberg, and T. F. Boggess, "Carrier recombination rates in narrow-gap semiconductor superlattices", unpublished.

Other (16)

E. Yablonovitch and E. O. Kane, "Reduction of Lasing Threshold Current Density by the Lowering of Valence Band Effective Mass", J. Lightwave Technol. LT- 4, 504 (1986).
[CrossRef]

e.g. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

T. C. Hasenberg, R. H. Miles, A. R. Kost, and L. West, "Recent advances in Sb-based midwaveinfrared lasers", J. Quantum Electron. QE-33, 1403 (1997).
[CrossRef]

D. H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, and L. West, "Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices", Appl. Phys. Lett. 67, 3700 (1995).
[CrossRef]

J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, "Type II quantum-well lasers for the mid-wavelength infrared", Appl. Phys. Lett. 67, 757 (1995).
[CrossRef]

H. K. Choi, G. W. Turner, and M. J. Manfra, "High CW power (>200mW/facet) at 3.4µm from InAsSb/InAlAsSb strained quantum well diode lasers", Electron. Lett. 32, 1296 (1996).
[CrossRef]

H. K. Choi, G. W. Turner, M. J. Manfra, and M. K. Connors, "175K continuous wave operation of InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5µm", Appl. Phys. Lett. 68, 2936 (1996).
[CrossRef]

S. R. Kurtz, R. M. Biefeld, A. A. Allerman, A. J. Howard, M. H. Crawford, and M. W. Pelczynski, "Pseudomorphic InAsSb multiple quantum well injection laser emitting at 3.5 µm", Appl. Phys. Lett. 68, 1332 (1996).
[CrossRef]

M. E. Flatte', J. T. Olesberg, S. A. Anson, T. F. Boggess, T. C. Hasenberg, R. H. Miles, and C. H. Grein, "Theoretical Performance of Mid-Infrared Broken-Gap Multilayer Superlattice Lasers", Appl. Phys. Lett. 70, 3212 (1997). The layer widths of the four-layer superlattice given in this reference are in error. In fact they should be the same as those of the superlattice considered here.
[CrossRef]

M. E. Flatte', C. H. Grein, and H. Ehrenreich, "Sensitivity of optimization of mid-infrared InAs/InGaSb laser active regions to temperature and composition variations", Appl. Phys. Lett. in press.

C. H. Grein, P. M. Young, M. E. Flatte', and H. Ehrenreich, "Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes", J. Appl. Phys. 78, 7143 (1995).
[CrossRef]

M. E. Flatte', C. H. Grein, H. Ehrenreich, R. H. Miles, and H. Cruz, "Theoretical performance limits of 2:1
[CrossRef]

M. E. Flatte', P. M. Young, L.-H. Peng, and H. Ehrenreich, "Generalized superlattice K p theory and intersubband optical transitions", Phys. Rev. B 53, 1963 (1996).
[CrossRef]

O. Madelung, in Semiconductors, Physics of Group IV Elements and III-V Compounds, edited by K.-H. Helluege and O. Madelung, Landolt-Boernstein, New Series, Group III, Vol. 17, Pt. a (Springer-Verlag, Berlin, 1982).

O. Madelung in Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds, edited by K.-H. Helluege and O. Madelung, Landolt-Boernstein, New Series, Group III, Vol. 22, Pt. a (Springer-Verlag, Berlin, 1987).

M. E. Flatte', C. H. Grein, T. C. Hasenberg, S. A. Anson, D.-J. Jang, J. T. Olesberg, and T. F. Boggess, "Carrier recombination rates in narrow-gap semiconductor superlattices", unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1.
Figure 1.

Band structure for a 13.8Å InAs/24Å In0.40Ga0.60Sb/13.8Å InAs/40Å Al0.30In0.28Ga0.42As0.50Sb0.50 superlattice at a lattice temperature of 300K. The in-plane momentum is K while the growth-direction momentum is K . Resonance energies within the conduction band and valence band are shown by solid red lines. The subbands which contribute most to the hole Auger rate are indicated in blue. Dashed lines mark the conduction and valence edge energies. The electrons (filled magenta circles) and holes (empty magenta circles) involved in the (roughly) 500 most probable transitions at (a) 77K and n = 5 × 1016 cm-3 and (b) 300K and n = 5 × 1017 cm-3 are also shown. In (b) the single most probable transition is shown in green schematically

Figure 2.
Figure 2.

Same as Fig. 1, but with the most important (blue) subbands shifted up in energy by (a) 90 meV and (b) 100 meV. Only the valence resonance energy is shown (red).

Figure 3.
Figure 3.

Hole Auger lifetime as a function of the energy shift of the fourth, fifth and sixth valence subbands towards the band edge (a) at 77K and a density of 5 × 1016 cm-3 and (b) at 300K and a density of 5 × 1017 cm-3.

Metrics