Abstract

The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Post, M. J., R. E. Cupp, "Optimizing a pulsed Doppler lidar," Appl. Opt., 29, 4145-4158 (1990).
    [CrossRef] [PubMed]
  2. Targ, R., et al., "Coherent lidar airborne wind sensor II: flight test results at 2 and 10 mm," Appl. Opt., 35, 7117- 7127 (1996).
    [CrossRef] [PubMed]
  3. Richmond, R., D. Jewell, U.S. Air Force ballistic winds program, Preprints 9th Conf. Coherent Laser Radar, Linkping, Sweden, (Swedish Defence Research Establishment, Stockholm, 1997), pp. 304-307.
  4. Werner, C., P. Flamant, G. Ancellet, A. Dolfi-Bouteyre, F. Koepp, H. Herrmann, C. Loth, J. Wildenauer, "WIND: An advanced wind infrared Doppler lidar for mesoscale meteorological studies," Proc. 5th Conf. Coherent Laser Radar, Munich, (Deutsche Forschungsanstalt fur Luft- und Raumfahrt, Munich, 1989), pp. 35-38.
  5. Bilbro, J. W., G. H. Fichtl, D. E. Fitzjarrald, M. Krause, "Airborne Doppler lidar wind field measurements," Bull. Amer. Meteorol. Soc., 65, 348-359 (1984).
    [CrossRef]
  6. Bilbro, J. W., C. A. DiMarzio, D. E. Fitzjarrald, S. C. Johnson, W. D. Jones, "Airborne Doppler lidar measurements," Appl. Opt., 25, 3952-3960 (1986).
    [CrossRef] [PubMed]
  7. Rothermel, J., MACAWS World Wide Web page, <A HREF="http://wwwghcc.msfc.nasa.gov/macaws.html">http://wwwghcc.msfc.nasa.gov/macaws.html</A>.
  8. Howell, J. N., R. M. Hardesty, J. Rothermel, R. T. Menzies, "Overview of the first Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment," Proc. SPIE, 2833, 116-127 (1996).
    [CrossRef]
  9. Menzies, R. T., D. M. Tratt, "Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter," Appl. Opt., 33, 5698-5711 (1994).
    [CrossRef] [PubMed]
  10. Amirault, C. T., C. A. Dimarzio, "Precision pointing using a dual-wedge scanner," Appl. Opt., 24, 1302-1308 (1985).
    [CrossRef] [PubMed]
  11. Rye, B. J., R. M. Hardesty, "Spectral matched filters in coherent laser radar," J. Mod. Opt., 41, 2131-2144 (1994).
    [CrossRef]
  12. Lee, R. W., K. A. Lee, "A poly-pulse-pair signal processor for coherent Doppler lidar," Coherent Laser Radar for the Atmosphere, OSA Technical Digest Series, (Optical Society of America, Washington, DC, 1980), WA2, 1-4.
  13. Rothermel, J., D. R. Cutten, R. M. Hardesty, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, "The Multi-center Airborne Coherent Atmospheric Wind Sensor," Bull. Amer. Meteorol. Soc., accepted (1998).
    [CrossRef]
  14. Browning, K. A., R. Wexler, "The determination of kinematic properties of a wind field using Doppler radar," J. Appl. Meteorol., 7, 105-113 (1961).
    [CrossRef]
  15. Rothermel, J., D. A. Bowdle, J. M. Vaughan, M. J. Post, "Evidence of a tropospheric aerosol backscatter background mode," Appl. Opt., 28, 1040-1042 (1989).
    [CrossRef] [PubMed]
  16. Kavaya, M. J., R. T. Menzies, "Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations," Appl. Opt., 24, 3444-3453 (1985).
    [CrossRef] [PubMed]
  17. Winant, C. D., C. E. Dorman, C. A. Friehe, R. C. Beardsley, "The marine layer off northern California: An example of supercritical channel flow," J. Atmos. Sci., 45, 3588-3605 (1988).
    [CrossRef]
  18. Mohr, C. G., L. J. Miller, "CEDRIC - A software package for Cartesian space editing, synthesis, and display of radar fields under interactive control," Preprints 21st Radar Meteorological Conference, Edmonton, Alta., Canada, (American Meteorological Society, Boston, 1983), pp. 569-574.
  19. Zhang, Z., T.N. Krishnamurti, "Ensemble forecasting of hurricane tracks," Bull. Amer. Meteorol. Soc., 78, 2785-2796 (1997).
    [CrossRef]
  20. Emanuel, K. B., et al., "Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF," Bull. Amer. Meteorol. Soc., 76, 1194-1208 (1995).
  21. Huffaker, R. M., M. J. Post, J. T. Priestley, F. F. Hall, Jr., R. A. Richter, R. J. Keller, "Feasibility studies for a global wind measuring satellite system (WINDSAT): Analysis of simulated performance," Appl. Opt., 22, 1655-1665 (1984).
  22. Kavaya, M. J., G. D. Spiers, E. S. Lobl, J. Rothermel, V. W. Keller, "Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique," Proc. SPIE, 2214, 237-249 (1994).
    [CrossRef]
  23. Baker, W. E., et al., "Lidar-measured winds from space: a key component for weather and climate prediction," Bull. Amer. Meteorol. Soc., 76, 869-888 (1995).
    [CrossRef]

Other

Post, M. J., R. E. Cupp, "Optimizing a pulsed Doppler lidar," Appl. Opt., 29, 4145-4158 (1990).
[CrossRef] [PubMed]

Targ, R., et al., "Coherent lidar airborne wind sensor II: flight test results at 2 and 10 mm," Appl. Opt., 35, 7117- 7127 (1996).
[CrossRef] [PubMed]

Richmond, R., D. Jewell, U.S. Air Force ballistic winds program, Preprints 9th Conf. Coherent Laser Radar, Linkping, Sweden, (Swedish Defence Research Establishment, Stockholm, 1997), pp. 304-307.

Werner, C., P. Flamant, G. Ancellet, A. Dolfi-Bouteyre, F. Koepp, H. Herrmann, C. Loth, J. Wildenauer, "WIND: An advanced wind infrared Doppler lidar for mesoscale meteorological studies," Proc. 5th Conf. Coherent Laser Radar, Munich, (Deutsche Forschungsanstalt fur Luft- und Raumfahrt, Munich, 1989), pp. 35-38.

Bilbro, J. W., G. H. Fichtl, D. E. Fitzjarrald, M. Krause, "Airborne Doppler lidar wind field measurements," Bull. Amer. Meteorol. Soc., 65, 348-359 (1984).
[CrossRef]

Bilbro, J. W., C. A. DiMarzio, D. E. Fitzjarrald, S. C. Johnson, W. D. Jones, "Airborne Doppler lidar measurements," Appl. Opt., 25, 3952-3960 (1986).
[CrossRef] [PubMed]

Rothermel, J., MACAWS World Wide Web page, <A HREF="http://wwwghcc.msfc.nasa.gov/macaws.html">http://wwwghcc.msfc.nasa.gov/macaws.html</A>.

Howell, J. N., R. M. Hardesty, J. Rothermel, R. T. Menzies, "Overview of the first Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment," Proc. SPIE, 2833, 116-127 (1996).
[CrossRef]

Menzies, R. T., D. M. Tratt, "Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter," Appl. Opt., 33, 5698-5711 (1994).
[CrossRef] [PubMed]

Amirault, C. T., C. A. Dimarzio, "Precision pointing using a dual-wedge scanner," Appl. Opt., 24, 1302-1308 (1985).
[CrossRef] [PubMed]

Rye, B. J., R. M. Hardesty, "Spectral matched filters in coherent laser radar," J. Mod. Opt., 41, 2131-2144 (1994).
[CrossRef]

Lee, R. W., K. A. Lee, "A poly-pulse-pair signal processor for coherent Doppler lidar," Coherent Laser Radar for the Atmosphere, OSA Technical Digest Series, (Optical Society of America, Washington, DC, 1980), WA2, 1-4.

Rothermel, J., D. R. Cutten, R. M. Hardesty, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, "The Multi-center Airborne Coherent Atmospheric Wind Sensor," Bull. Amer. Meteorol. Soc., accepted (1998).
[CrossRef]

Browning, K. A., R. Wexler, "The determination of kinematic properties of a wind field using Doppler radar," J. Appl. Meteorol., 7, 105-113 (1961).
[CrossRef]

Rothermel, J., D. A. Bowdle, J. M. Vaughan, M. J. Post, "Evidence of a tropospheric aerosol backscatter background mode," Appl. Opt., 28, 1040-1042 (1989).
[CrossRef] [PubMed]

Kavaya, M. J., R. T. Menzies, "Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations," Appl. Opt., 24, 3444-3453 (1985).
[CrossRef] [PubMed]

Winant, C. D., C. E. Dorman, C. A. Friehe, R. C. Beardsley, "The marine layer off northern California: An example of supercritical channel flow," J. Atmos. Sci., 45, 3588-3605 (1988).
[CrossRef]

Mohr, C. G., L. J. Miller, "CEDRIC - A software package for Cartesian space editing, synthesis, and display of radar fields under interactive control," Preprints 21st Radar Meteorological Conference, Edmonton, Alta., Canada, (American Meteorological Society, Boston, 1983), pp. 569-574.

Zhang, Z., T.N. Krishnamurti, "Ensemble forecasting of hurricane tracks," Bull. Amer. Meteorol. Soc., 78, 2785-2796 (1997).
[CrossRef]

Emanuel, K. B., et al., "Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF," Bull. Amer. Meteorol. Soc., 76, 1194-1208 (1995).

Huffaker, R. M., M. J. Post, J. T. Priestley, F. F. Hall, Jr., R. A. Richter, R. J. Keller, "Feasibility studies for a global wind measuring satellite system (WINDSAT): Analysis of simulated performance," Appl. Opt., 22, 1655-1665 (1984).

Kavaya, M. J., G. D. Spiers, E. S. Lobl, J. Rothermel, V. W. Keller, "Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique," Proc. SPIE, 2214, 237-249 (1994).
[CrossRef]

Baker, W. E., et al., "Lidar-measured winds from space: a key component for weather and climate prediction," Bull. Amer. Meteorol. Soc., 76, 869-888 (1995).
[CrossRef]

Supplementary Material (3)

» Media 1: MOV (111 KB)     
» Media 2: MOV (196 KB)     
» Media 3: MOV (86 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Block diagram of MACAWS subsystems and environment.

Fig. 2.
Fig. 2.

MACAWS scanning capabilities: (a) Lidar beam orientation is fixed, relative either to aircraft or to surface, to obtain quasi-vertical profiles of line-of-sight velocity and aerosol backscatter, or for studies of surface angular scattering dependence; beam elevation angle relative to aircraft may be fixed over maximum range of ±32 deg. (b) Co-planar scanning is performed to measure a single wind field, with 40 deg in-plane angular separation between forward and aft scans. (c) Co-planar scanning is performed at up to five elevation angles with arbitrary angular spacing to achieve volumetric coverage, over a vertical range of ±25 deg.

Fig. 3.
Fig. 3.

(QuickTime animation 142 KB) Marine PBL wind structure measured over five scan planes during 23 September 1995, 1827-1831 UTC (see Fig. 2(b)). Aircraft was on a southerly heading ~30 km west of the coast of northern Oregon at 908 m altitude over the site of the Coastal Ocean Probing Experiment (COPE). Along-track distance is 23.5 km. Row of vectors at bottom of each wind field shows winds derived from aircraft inertial navigation system. Vectors point into the wind. Bottom panel shows corresponding vertical distribution of scan planes (see Fig. 2(c)).

Fig. 4.
Fig. 4.

(QuickTime animation 236 KB) Example of full-resolution wind field measurements at multiple elevation angles, obtained near Pt. Arena, California on 30 June 1996, 171134 – 171500 UTC, at ~0.49 km height ASL. Along-track distance is 21.5 km. Wind fields were measured at 5 elevation angles from 0 to -2.77 deg. Along-track and LOS resolution are ~590 m and 300 m, respectively. Lidar beam intersected sea surface at lowest elevation angle. Small-scale wind variation indicates presence of secondary atmospheric circulations and turbulence, as well as residual errors.

Fig. 5.
Fig. 5.

(QuickTime animation 136 KB) Interpolated wind fields based on full-resolution measurements shown in Fig. 4. Terrain contours are in 200-m increments. Left-hand side shows horizontal slice through Cartesian grid volume at different heights above sea level (ASL). Right-hand side is enlargement of area marked by the dashed box. Wind barbs point downwind.

Tables (1)

Tables Icon

TABLE 1. MACAWS primary operating characteristics

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ x [ 2 ( n a 1 ) d 1 + 2 n a ( n g + n b P ) + 2 d 2 ] V g

Metrics