Abstract

An n-GaN photoelectrochemical (PEC) cell with immersed finger-type indium tin oxide (ITO) ohmic contacts was demonstrated in the present study to enhance the hydrogen generation rate. The finger-type ITO ohmic contacts were covered with SiO2 layers to prevent the PEC cell from generating leakage current. Using a 1M NaCl electrolyte and external biases, the typical photocurrent density and gas generation rate of the n-GaN working electrodes with ITO finger contacts were found to be higher than those with Cr/Au finger contacts. The enhancement in photocurrent density or gas generation rate can be attributed to the transparent ITO contacts which allowed the introduction of relatively more photons into the GaN layer. No significant corrosion was observed in the ITO layer after the PEC process compared with the Cr/Au finger contacts which were significantly peeled from the GaN layer. These results indicate that the use of n-GaN working electrodes with finger-type ITO ohmic contacts is a promising approach for PEC cells.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. S. Lewis, “Light work with water,” Nature414(6864), 589–590 (2001).
    [CrossRef] [PubMed]
  2. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
    [CrossRef] [PubMed]
  3. A. J. Nozik, “Electrode materials for photoelectrochemical devices,” J. Cryst. Growth39(1), 200–209 (1977).
    [CrossRef]
  4. R. C. Kainthla and B. Zelenay, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc.134(4), 841 (1987).
    [CrossRef]
  5. A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem.100(31), 13061–13078 (1996).
    [CrossRef]
  6. I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
    [CrossRef]
  7. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
    [CrossRef]
  8. K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), 543–545 (2005).
    [CrossRef]
  9. J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
    [CrossRef]
  10. M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys.126(5), 054708 (2007).
    [CrossRef] [PubMed]
  11. S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc.157(2), B266–B268 (2010).
    [CrossRef]
  12. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, and C. C. Liu, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron.43(11), 2081–2084 (1999).
    [CrossRef]
  13. T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett.74(26), 3930 (1999).
    [CrossRef]
  14. J. Stotter, Y. Show, S. Wang, and G. Swain, “Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes,” Chem. Mater.17(19), 4880–4888 (2005).
    [CrossRef]
  15. K. Fujii, H. Nakayama, K. Sato, T. Kato, M. W. Cho, and T. Yao, “Improvement of hydrogen generation efficiency using GaN photoelectrochemical reaction in electrolytes with alcohol,” Phys. Stat. Solidi C5(6), 2333–2335 (2008).
    [CrossRef]
  16. J. E. A. M. van den Meerakker, E. A. Meulenkamp, and M. Scholten, “(Photo)electrochemical characterization of tin‐doped indium oxide,” J. Appl. Phys.74(5), 3282 (1993).
    [CrossRef]
  17. C. G. Zosik, Handbook of Electrochemistry, 1st ed. (Elsevier, 2007) p. 342.
  18. C. A. Huang, K. C. Li, G. C. Tu, and W. S. Wang, “The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid,” Electrochim. Acta48(24), 3599–3605 (2003).
    [CrossRef]

2010

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc.157(2), B266–B268 (2010).
[CrossRef]

2008

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
[CrossRef]

K. Fujii, H. Nakayama, K. Sato, T. Kato, M. W. Cho, and T. Yao, “Improvement of hydrogen generation efficiency using GaN photoelectrochemical reaction in electrolytes with alcohol,” Phys. Stat. Solidi C5(6), 2333–2335 (2008).
[CrossRef]

2007

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys.126(5), 054708 (2007).
[CrossRef] [PubMed]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

2005

K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), 543–545 (2005).
[CrossRef]

J. Stotter, Y. Show, S. Wang, and G. Swain, “Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes,” Chem. Mater.17(19), 4880–4888 (2005).
[CrossRef]

2003

C. A. Huang, K. C. Li, G. C. Tu, and W. S. Wang, “The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid,” Electrochim. Acta48(24), 3599–3605 (2003).
[CrossRef]

2002

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

2001

N. S. Lewis, “Light work with water,” Nature414(6864), 589–590 (2001).
[CrossRef] [PubMed]

1999

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, and C. C. Liu, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron.43(11), 2081–2084 (1999).
[CrossRef]

T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett.74(26), 3930 (1999).
[CrossRef]

1996

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem.100(31), 13061–13078 (1996).
[CrossRef]

1993

J. E. A. M. van den Meerakker, E. A. Meulenkamp, and M. Scholten, “(Photo)electrochemical characterization of tin‐doped indium oxide,” J. Appl. Phys.74(5), 3282 (1993).
[CrossRef]

1987

R. C. Kainthla and B. Zelenay, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc.134(4), 841 (1987).
[CrossRef]

1977

A. J. Nozik, “Electrode materials for photoelectrochemical devices,” J. Cryst. Growth39(1), 200–209 (1977).
[CrossRef]

1972

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Abare, A. C.

T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett.74(26), 3930 (1999).
[CrossRef]

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Buchinsky, O.

T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett.74(26), 3930 (1999).
[CrossRef]

Chang, C. M.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, and C. C. Liu, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron.43(11), 2081–2084 (1999).
[CrossRef]

Chang, K. H.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc.157(2), B266–B268 (2010).
[CrossRef]

Chi, G. C.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, and C. C. Liu, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron.43(11), 2081–2084 (1999).
[CrossRef]

Cho, M. W.

K. Fujii, H. Nakayama, K. Sato, T. Kato, M. W. Cho, and T. Yao, “Improvement of hydrogen generation efficiency using GaN photoelectrochemical reaction in electrolytes with alcohol,” Phys. Stat. Solidi C5(6), 2333–2335 (2008).
[CrossRef]

Cohen, D.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

Cohen, D. A.

T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett.74(26), 3930 (1999).
[CrossRef]

Coldren, L. A.

T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett.74(26), 3930 (1999).
[CrossRef]

DenBaars, S. P.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett.74(26), 3930 (1999).
[CrossRef]

Fujii, K.

K. Fujii, H. Nakayama, K. Sato, T. Kato, M. W. Cho, and T. Yao, “Improvement of hydrogen generation efficiency using GaN photoelectrochemical reaction in electrolytes with alcohol,” Phys. Stat. Solidi C5(6), 2333–2335 (2008).
[CrossRef]

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys.126(5), 054708 (2007).
[CrossRef] [PubMed]

K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), 543–545 (2005).
[CrossRef]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Hansen, M.

T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett.74(26), 3930 (1999).
[CrossRef]

Hirako, A.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys.126(5), 054708 (2007).
[CrossRef] [PubMed]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Huang, C. A.

C. A. Huang, K. C. Li, G. C. Tu, and W. S. Wang, “The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid,” Electrochim. Acta48(24), 3599–3605 (2003).
[CrossRef]

Ito, T.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys.126(5), 054708 (2007).
[CrossRef] [PubMed]

Iwaki, Y.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys.126(5), 054708 (2007).
[CrossRef] [PubMed]

Jiang, H. X.

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
[CrossRef]

Jou, M. J.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, and C. C. Liu, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron.43(11), 2081–2084 (1999).
[CrossRef]

Kainthla, R. C.

R. C. Kainthla and B. Zelenay, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc.134(4), 841 (1987).
[CrossRef]

Karasawa, T.

K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), 543–545 (2005).
[CrossRef]

Kato, T.

K. Fujii, H. Nakayama, K. Sato, T. Kato, M. W. Cho, and T. Yao, “Improvement of hydrogen generation efficiency using GaN photoelectrochemical reaction in electrolytes with alcohol,” Phys. Stat. Solidi C5(6), 2333–2335 (2008).
[CrossRef]

Lai, W. C.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc.157(2), B266–B268 (2010).
[CrossRef]

Lal, R.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

Lee, M. L.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc.157(2), B266–B268 (2010).
[CrossRef]

Lewis, N. S.

N. S. Lewis, “Light work with water,” Nature414(6864), 589–590 (2001).
[CrossRef] [PubMed]

Li, J.

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
[CrossRef]

Li, K. C.

C. A. Huang, K. C. Li, G. C. Tu, and W. S. Wang, “The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid,” Electrochim. Acta48(24), 3599–3605 (2003).
[CrossRef]

Lin, J. Y.

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
[CrossRef]

Liu, C. C.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, and C. C. Liu, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron.43(11), 2081–2084 (1999).
[CrossRef]

Liu, S. Y.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc.157(2), B266–B268 (2010).
[CrossRef]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Margalith, T.

T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett.74(26), 3930 (1999).
[CrossRef]

Memming, R.

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem.100(31), 13061–13078 (1996).
[CrossRef]

Meulenkamp, E. A.

J. E. A. M. van den Meerakker, E. A. Meulenkamp, and M. Scholten, “(Photo)electrochemical characterization of tin‐doped indium oxide,” J. Appl. Phys.74(5), 3282 (1993).
[CrossRef]

Mishra, U.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

Nakamura, S.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

Nakayama, H.

K. Fujii, H. Nakayama, K. Sato, T. Kato, M. W. Cho, and T. Yao, “Improvement of hydrogen generation efficiency using GaN photoelectrochemical reaction in electrolytes with alcohol,” Phys. Stat. Solidi C5(6), 2333–2335 (2008).
[CrossRef]

Nozik, A. J.

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem.100(31), 13061–13078 (1996).
[CrossRef]

A. J. Nozik, “Electrode materials for photoelectrochemical devices,” J. Cryst. Growth39(1), 200–209 (1977).
[CrossRef]

Ohkawa, K.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys.126(5), 054708 (2007).
[CrossRef] [PubMed]

K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), 543–545 (2005).
[CrossRef]

Ono, M.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys.126(5), 054708 (2007).
[CrossRef] [PubMed]

Sato, K.

K. Fujii, H. Nakayama, K. Sato, T. Kato, M. W. Cho, and T. Yao, “Improvement of hydrogen generation efficiency using GaN photoelectrochemical reaction in electrolytes with alcohol,” Phys. Stat. Solidi C5(6), 2333–2335 (2008).
[CrossRef]

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Scholten, M.

J. E. A. M. van den Meerakker, E. A. Meulenkamp, and M. Scholten, “(Photo)electrochemical characterization of tin‐doped indium oxide,” J. Appl. Phys.74(5), 3282 (1993).
[CrossRef]

Sheu, J. K.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc.157(2), B266–B268 (2010).
[CrossRef]

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, and C. C. Liu, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron.43(11), 2081–2084 (1999).
[CrossRef]

Show, Y.

J. Stotter, Y. Show, S. Wang, and G. Swain, “Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes,” Chem. Mater.17(19), 4880–4888 (2005).
[CrossRef]

Stotter, J.

J. Stotter, Y. Show, S. Wang, and G. Swain, “Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes,” Chem. Mater.17(19), 4880–4888 (2005).
[CrossRef]

Su, Y. K.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, and C. C. Liu, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron.43(11), 2081–2084 (1999).
[CrossRef]

Swain, G.

J. Stotter, Y. Show, S. Wang, and G. Swain, “Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes,” Chem. Mater.17(19), 4880–4888 (2005).
[CrossRef]

Tseng, C. K.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc.157(2), B266–B268 (2010).
[CrossRef]

Tu, G. C.

C. A. Huang, K. C. Li, G. C. Tu, and W. S. Wang, “The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid,” Electrochim. Acta48(24), 3599–3605 (2003).
[CrossRef]

van den Meerakker, J. E. A. M.

J. E. A. M. van den Meerakker, E. A. Meulenkamp, and M. Scholten, “(Photo)electrochemical characterization of tin‐doped indium oxide,” J. Appl. Phys.74(5), 3282 (1993).
[CrossRef]

Waki, I.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

Walukiewicz, W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Wang, S.

J. Stotter, Y. Show, S. Wang, and G. Swain, “Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes,” Chem. Mater.17(19), 4880–4888 (2005).
[CrossRef]

Wang, W. S.

C. A. Huang, K. C. Li, G. C. Tu, and W. S. Wang, “The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid,” Electrochim. Acta48(24), 3599–3605 (2003).
[CrossRef]

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Yao, T.

K. Fujii, H. Nakayama, K. Sato, T. Kato, M. W. Cho, and T. Yao, “Improvement of hydrogen generation efficiency using GaN photoelectrochemical reaction in electrolytes with alcohol,” Phys. Stat. Solidi C5(6), 2333–2335 (2008).
[CrossRef]

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys.126(5), 054708 (2007).
[CrossRef] [PubMed]

Ye, J. C.

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc.157(2), B266–B268 (2010).
[CrossRef]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Zelenay, B.

R. C. Kainthla and B. Zelenay, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc.134(4), 841 (1987).
[CrossRef]

Appl. Phys. Lett.

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
[CrossRef]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett.74(26), 3930 (1999).
[CrossRef]

Chem. Mater.

J. Stotter, Y. Show, S. Wang, and G. Swain, “Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes,” Chem. Mater.17(19), 4880–4888 (2005).
[CrossRef]

Electrochim. Acta

C. A. Huang, K. C. Li, G. C. Tu, and W. S. Wang, “The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid,” Electrochim. Acta48(24), 3599–3605 (2003).
[CrossRef]

J. Appl. Phys.

J. E. A. M. van den Meerakker, E. A. Meulenkamp, and M. Scholten, “(Photo)electrochemical characterization of tin‐doped indium oxide,” J. Appl. Phys.74(5), 3282 (1993).
[CrossRef]

J. Chem. Phys.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys.126(5), 054708 (2007).
[CrossRef] [PubMed]

J. Cryst. Growth

A. J. Nozik, “Electrode materials for photoelectrochemical devices,” J. Cryst. Growth39(1), 200–209 (1977).
[CrossRef]

J. Electrochem. Soc.

R. C. Kainthla and B. Zelenay, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc.134(4), 841 (1987).
[CrossRef]

S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Lai, “Improved hydrogen gas generation rate of n-GaN photoelectrode with SiO2 Protection layer on the ohmic contacts from the electrolyte,” J. Electrochem. Soc.157(2), B266–B268 (2010).
[CrossRef]

J. Phys. Chem.

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem.100(31), 13061–13078 (1996).
[CrossRef]

Jpn. J. Appl. Phys.

K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), 543–545 (2005).
[CrossRef]

Nature

N. S. Lewis, “Light work with water,” Nature414(6864), 589–590 (2001).
[CrossRef] [PubMed]

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Phys. Stat. Solidi C

K. Fujii, H. Nakayama, K. Sato, T. Kato, M. W. Cho, and T. Yao, “Improvement of hydrogen generation efficiency using GaN photoelectrochemical reaction in electrolytes with alcohol,” Phys. Stat. Solidi C5(6), 2333–2335 (2008).
[CrossRef]

Solid-State Electron.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, and C. C. Liu, “Indium tin oxide ohmic contact to highly doped n-GaN,” Solid-State Electron.43(11), 2081–2084 (1999).
[CrossRef]

Other

C. G. Zosik, Handbook of Electrochemistry, 1st ed. (Elsevier, 2007) p. 342.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the photoelectrochemical cells (a) PEC1, (b) PEC2 (c) picture taken at a local area of PEC1. The inset of Fig. 1(c) shows the schematic structure of ITO/SiO2 staked layers on the GaN.

Fig. 2
Fig. 2

Typical photocurrent density-bias curves of the experimental PEC cells.

Fig. 3
Fig. 3

Photocurrent densities as a function of time when the PEC cells were biased at VCE = 0.8 V.

Fig. 4
Fig. 4

SEM images of the cross-section of PEC1 (a) before and (b) after photoelectrochemical measurements. (c) and (d) are the SEM images of the cross-section of PEC3 before and after photoelectrochemical measurements, respectively.

Tables (1)

Tables Icon

Table 1 The Results of Solar-to-Hydrogen Conversion Efficiency, Gas Generation Rate, and Total Reaction Charge at VCE = 0.8 V

Metrics