Abstract

A new design of a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, a transducer layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The transducer layer is a multilayer stack made of a Silver, a Silica and a Palladium layer. The spectral modulation of the light transmitted by the fiber allows to detect the presence of hydrogen in the environment. The sensor is only sensitive to the Transverse Magnetic polarized light and the Traverse Electric polarized light can be used therefore as a reference signal. A more reliable response is expected for the fiber SPR hydrogen sensor based on spectral modulation instead of on intensity modulation. The multilayer thickness defines the sensor performance. The silica thickness tunes the resonant wavelength, whereas the Silver and Palladium thickness determine the sensor sensitivity. In an optimal configuration (NA = 0.22, 100 μm core radius and transducer length = 1 cm), the resonant wavelength is shifted over 17.6 nm at a concentration of 4% Hydrogen in Argon for the case of the 35 nm Silver/ 100 nm Silica/ 3 nm palladium multilayer.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. Lewis, “Hydrogen in palladium and palladium alloys,” Int. J. Hydrogen Energy 21(6), 461–464 (1996).
    [CrossRef]
  2. M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
    [CrossRef]
  3. R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
    [CrossRef]
  4. M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56(1–2), 158–163 (1999).
    [CrossRef]
  5. J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110(1), 23–27 (2005).
    [CrossRef]
  6. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B 60(1), 27–34 (1999).
    [CrossRef]
  7. A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
    [CrossRef]
  8. C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
    [CrossRef]
  9. X. T. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134(2), 687–693 (2008).
    [CrossRef]
  10. J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [CrossRef] [PubMed]
  11. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13(1), 118–124 (2002).
    [CrossRef]
  12. C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and Meyrueis, “Wavelength response of a surface plasmon resonance palladium coated optic fiber,” Opt. Eng. 50(1), 014403 (2011).
    [CrossRef]
  13. E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
    [CrossRef]
  14. D. Luna-Moreno, D. Monzon-Hernandez, J. Villatoro, and G. Badenes, “Optical fiber hydrogen sensor based on core diameter mismatch and annealed pd-au thin films,” Sens. Actuators B 125(1), 66–71 (2007).
    [CrossRef]
  15. M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing mg-based metal hydrides,” Sens. Actuators B 123(1), 538–545 (2007).
    [CrossRef]
  16. M. Slaman, B. Dam, H. Schreuders, and R. Griessen, “Optimization of mg-based fiber optic hydrogen detectors by alloying the catalyst,” Int. J. Hydrogen Energy 33(3), 1084–1089 (2008).
    [CrossRef]
  17. K. Ito and T. Ohgami, “Hydrogen detection based on coloration of anodic tungsten-oxide film,” Appl. Phys. Lett. 60(8), 938–940 (1992).
    [CrossRef]
  18. C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008).
    [CrossRef] [PubMed]
  19. M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited spr optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125(2), 296–303 (2006).
    [CrossRef]
  20. A. K. Sharma and B. D. Gupta, “Comparison of performance parameters of conventional and nano-plasmonic fiber optic sensors,” Plasmonics 2(2), 51–54 (2007).
    [CrossRef]
  21. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12(3), 213–220 (1993).
    [CrossRef]
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).
  23. Abeles, “La theorie generale des couches minces,” J. Phys. Radium 11, 307–310 (1950).
  24. K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
    [CrossRef]
  25. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
    [CrossRef]
  26. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  27. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159(1), 24–32 (2010).
    [CrossRef]
  28. D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [CrossRef]
  29. F. Y. Kou and T. Tamir, “Range extension of surface-plasmons by dielectric layers,” Opt. Lett. 12(5), 367–369 (1987).
    [CrossRef] [PubMed]
  30. C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113(1), 169–176 (2006).
    [CrossRef]
  31. A. K. Sharma and G. J. Mohr, “Theoretical understanding of an alternating dielectric multilayer-based fiber optic spr sensor and its application to gas sensing,” N. J. Phys. 10, 023039 (2008).
    [CrossRef]
  32. V. N. Konopsky and E. V. Alieva, “Long-range plasmons in lossy metal films on photonic crystal surfaces,” Opt. Lett. 34(4), 479–481 (2009).
    [CrossRef] [PubMed]

2011 (1)

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and Meyrueis, “Wavelength response of a surface plasmon resonance palladium coated optic fiber,” Opt. Eng. 50(1), 014403 (2011).
[CrossRef]

2010 (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159(1), 24–32 (2010).
[CrossRef]

2009 (1)

2008 (5)

A. K. Sharma and G. J. Mohr, “Theoretical understanding of an alternating dielectric multilayer-based fiber optic spr sensor and its application to gas sensing,” N. J. Phys. 10, 023039 (2008).
[CrossRef]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008).
[CrossRef] [PubMed]

M. Slaman, B. Dam, H. Schreuders, and R. Griessen, “Optimization of mg-based fiber optic hydrogen detectors by alloying the catalyst,” Int. J. Hydrogen Energy 33(3), 1084–1089 (2008).
[CrossRef]

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

X. T. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134(2), 687–693 (2008).
[CrossRef]

2007 (5)

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[CrossRef]

D. Luna-Moreno, D. Monzon-Hernandez, J. Villatoro, and G. Badenes, “Optical fiber hydrogen sensor based on core diameter mismatch and annealed pd-au thin films,” Sens. Actuators B 125(1), 66–71 (2007).
[CrossRef]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing mg-based metal hydrides,” Sens. Actuators B 123(1), 538–545 (2007).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Comparison of performance parameters of conventional and nano-plasmonic fiber optic sensors,” Plasmonics 2(2), 51–54 (2007).
[CrossRef]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[CrossRef]

2006 (3)

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113(1), 169–176 (2006).
[CrossRef]

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited spr optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125(2), 296–303 (2006).
[CrossRef]

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[CrossRef]

2005 (2)

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110(1), 23–27 (2005).
[CrossRef]

J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

2002 (1)

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13(1), 118–124 (2002).
[CrossRef]

1999 (3)

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56(1–2), 158–163 (1999).
[CrossRef]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B 60(1), 27–34 (1999).
[CrossRef]

K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
[CrossRef]

1996 (1)

F. A. Lewis, “Hydrogen in palladium and palladium alloys,” Int. J. Hydrogen Energy 21(6), 461–464 (1996).
[CrossRef]

1993 (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12(3), 213–220 (1993).
[CrossRef]

1992 (1)

K. Ito and T. Ohgami, “Hydrogen detection based on coloration of anodic tungsten-oxide film,” Appl. Phys. Lett. 60(8), 938–940 (1992).
[CrossRef]

1987 (1)

1984 (1)

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[CrossRef]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

1971 (1)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

1950 (1)

Abeles, “La theorie generale des couches minces,” J. Phys. Radium 11, 307–310 (1950).

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159(1), 24–32 (2010).
[CrossRef]

Abeles,

Abeles, “La theorie generale des couches minces,” J. Phys. Radium 11, 307–310 (1950).

Alieva, E. V.

Allsop, T.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[CrossRef]

Badenes, G.

D. Luna-Moreno, D. Monzon-Hernandez, J. Villatoro, and G. Badenes, “Optical fiber hydrogen sensor based on core diameter mismatch and annealed pd-au thin films,” Sens. Actuators B 125(1), 66–71 (2007).
[CrossRef]

Barton, J. S.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[CrossRef]

Bennion, I.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[CrossRef]

Bevenot, X.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13(1), 118–124 (2002).
[CrossRef]

Borsa, D. M.

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing mg-based metal hydrides,” Sens. Actuators B 123(1), 538–545 (2007).
[CrossRef]

Butler, M. A.

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[CrossRef]

Caucheteur, C.

Chen, H. W.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Chen, K. P.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113(1), 169–176 (2006).
[CrossRef]

Clement, M.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13(1), 118–124 (2002).
[CrossRef]

Dam, B.

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and Meyrueis, “Wavelength response of a surface plasmon resonance palladium coated optic fiber,” Opt. Eng. 50(1), 014403 (2011).
[CrossRef]

M. Slaman, B. Dam, H. Schreuders, and R. Griessen, “Optimization of mg-based fiber optic hydrogen detectors by alloying the catalyst,” Int. J. Hydrogen Energy 33(3), 1084–1089 (2008).
[CrossRef]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing mg-based metal hydrides,” Sens. Actuators B 123(1), 538–545 (2007).
[CrossRef]

Debliquy, M.

Duine, P. A.

K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
[CrossRef]

Gagnaire, H.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13(1), 118–124 (2002).
[CrossRef]

Griessen, R.

M. Slaman, B. Dam, H. Schreuders, and R. Griessen, “Optimization of mg-based fiber optic hydrogen detectors by alloying the catalyst,” Int. J. Hydrogen Energy 33(3), 1084–1089 (2008).
[CrossRef]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing mg-based metal hydrides,” Sens. Actuators B 123(1), 538–545 (2007).
[CrossRef]

Gupta, B. D.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Comparison of performance parameters of conventional and nano-plasmonic fiber optic sensors,” Plasmonics 2(2), 51–54 (2007).
[CrossRef]

Higo, M.

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited spr optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125(2), 296–303 (2006).
[CrossRef]

Hsiao, C. N.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113(1), 169–176 (2006).
[CrossRef]

Ito, K.

K. Ito and T. Ohgami, “Hydrogen detection based on coloration of anodic tungsten-oxide film,” Appl. Phys. Lett. 60(8), 938–940 (1992).
[CrossRef]

Javahiraly, N.

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and Meyrueis, “Wavelength response of a surface plasmon resonance palladium coated optic fiber,” Opt. Eng. 50(1), 014403 (2011).
[CrossRef]

Jha, R.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[CrossRef]

Jones, B. J. S.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[CrossRef]

Jones, J. D. C.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12(3), 213–220 (1993).
[CrossRef]

Jyu, S. S.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Kazemi, A.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56(1–2), 158–163 (1999).
[CrossRef]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B 60(1), 27–34 (1999).
[CrossRef]

Konopsky, V. N.

Kou, F. Y.

Kretschmann, E.

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Lahem, D.

Lee, C. K.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113(1), 169–176 (2006).
[CrossRef]

Lewis, F. A.

F. A. Lewis, “Hydrogen in palladium and palladium alloys,” Int. J. Hydrogen Energy 21(6), 461–464 (1996).
[CrossRef]

Lin, C. W.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113(1), 169–176 (2006).
[CrossRef]

Lin, S.

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113(1), 169–176 (2006).
[CrossRef]

Lin, S. W.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Lin, Y. S.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

X. T. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134(2), 687–693 (2008).
[CrossRef]

Liu, W. F.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Luna-Moreno, D.

D. Luna-Moreno, D. Monzon-Hernandez, J. Villatoro, and G. Badenes, “Optical fiber hydrogen sensor based on core diameter mismatch and annealed pd-au thin films,” Sens. Actuators B 125(1), 66–71 (2007).
[CrossRef]

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110(1), 23–27 (2005).
[CrossRef]

Maier, R. R. J.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[CrossRef]

Marin, E.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[CrossRef]

McCulloch, S.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[CrossRef]

Megret, P.

Meyrueis,

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and Meyrueis, “Wavelength response of a surface plasmon resonance palladium coated optic fiber,” Opt. Eng. 50(1), 014403 (2011).
[CrossRef]

Mitsushio, M.

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited spr optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125(2), 296–303 (2006).
[CrossRef]

Miyashita, K.

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited spr optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125(2), 296–303 (2006).
[CrossRef]

Mohr, G. J.

A. K. Sharma and G. J. Mohr, “Theoretical understanding of an alternating dielectric multilayer-based fiber optic spr sensor and its application to gas sensing,” N. J. Phys. 10, 023039 (2008).
[CrossRef]

Monzon-Hernandez, D.

D. Luna-Moreno, D. Monzon-Hernandez, J. Villatoro, and G. Badenes, “Optical fiber hydrogen sensor based on core diameter mismatch and annealed pd-au thin films,” Sens. Actuators B 125(1), 66–71 (2007).
[CrossRef]

J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110(1), 23–27 (2005).
[CrossRef]

Ohgami, T.

K. Ito and T. Ohgami, “Hydrogen detection based on coloration of anodic tungsten-oxide film,” Appl. Phys. Lett. 60(8), 938–940 (1992).
[CrossRef]

Pasturel, M.

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing mg-based metal hydrides,” Sens. Actuators B 123(1), 538–545 (2007).
[CrossRef]

Perrotton, C.

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and Meyrueis, “Wavelength response of a surface plasmon resonance palladium coated optic fiber,” Opt. Eng. 50(1), 014403 (2011).
[CrossRef]

Petrick, R.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56(1–2), 158–163 (1999).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rector, J. H.

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing mg-based metal hydrides,” Sens. Actuators B 123(1), 538–545 (2007).
[CrossRef]

Rubin, M.

K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Schreuders, H.

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and Meyrueis, “Wavelength response of a surface plasmon resonance palladium coated optic fiber,” Opt. Eng. 50(1), 014403 (2011).
[CrossRef]

M. Slaman, B. Dam, H. Schreuders, and R. Griessen, “Optimization of mg-based fiber optic hydrogen detectors by alloying the catalyst,” Int. J. Hydrogen Energy 33(3), 1084–1089 (2008).
[CrossRef]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing mg-based metal hydrides,” Sens. Actuators B 123(1), 538–545 (2007).
[CrossRef]

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159(1), 24–32 (2010).
[CrossRef]

Sharma, A. K.

A. K. Sharma and G. J. Mohr, “Theoretical understanding of an alternating dielectric multilayer-based fiber optic spr sensor and its application to gas sensing,” N. J. Phys. 10, 023039 (2008).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Comparison of performance parameters of conventional and nano-plasmonic fiber optic sensors,” Plasmonics 2(2), 51–54 (2007).
[CrossRef]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[CrossRef]

Slaman, M.

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and Meyrueis, “Wavelength response of a surface plasmon resonance palladium coated optic fiber,” Opt. Eng. 50(1), 014403 (2011).
[CrossRef]

M. Slaman, B. Dam, H. Schreuders, and R. Griessen, “Optimization of mg-based fiber optic hydrogen detectors by alloying the catalyst,” Int. J. Hydrogen Energy 33(3), 1084–1089 (2008).
[CrossRef]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing mg-based metal hydrides,” Sens. Actuators B 123(1), 538–545 (2007).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Sutapun, B.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56(1–2), 158–163 (1999).
[CrossRef]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B 60(1), 27–34 (1999).
[CrossRef]

Tabib-Azar, M.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B 60(1), 27–34 (1999).
[CrossRef]

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56(1–2), 158–163 (1999).
[CrossRef]

Tamir, T.

Tien, C. L.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Trouillet, A.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[CrossRef]

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13(1), 118–124 (2002).
[CrossRef]

Veillas, C.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[CrossRef]

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13(1), 118–124 (2002).
[CrossRef]

Villatoro, J.

D. Luna-Moreno, D. Monzon-Hernandez, J. Villatoro, and G. Badenes, “Optical fiber hydrogen sensor based on core diameter mismatch and annealed pd-au thin films,” Sens. Actuators B 125(1), 66–71 (2007).
[CrossRef]

J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110(1), 23–27 (2005).
[CrossRef]

von Rottkay, K.

K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
[CrossRef]

Wei, T.

X. T. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134(2), 687–693 (2008).
[CrossRef]

Wei, X. T.

X. T. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134(2), 687–693 (2008).
[CrossRef]

Xiao, H.

X. T. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134(2), 687–693 (2008).
[CrossRef]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12(3), 213–220 (1993).
[CrossRef]

Appl. Phys. Lett. (2)

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[CrossRef]

K. Ito and T. Ohgami, “Hydrogen detection based on coloration of anodic tungsten-oxide film,” Appl. Phys. Lett. 60(8), 938–940 (1992).
[CrossRef]

IEEE Sens. J. (1)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[CrossRef]

Int. J. Hydrogen Energy (2)

M. Slaman, B. Dam, H. Schreuders, and R. Griessen, “Optimization of mg-based fiber optic hydrogen detectors by alloying the catalyst,” Int. J. Hydrogen Energy 33(3), 1084–1089 (2008).
[CrossRef]

F. A. Lewis, “Hydrogen in palladium and palladium alloys,” Int. J. Hydrogen Energy 21(6), 461–464 (1996).
[CrossRef]

J. Appl. Phys. (1)

K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[CrossRef]

J. Phys. Radium (1)

Abeles, “La theorie generale des couches minces,” J. Phys. Radium 11, 307–310 (1950).

Meas. Sci. Technol. (2)

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[CrossRef]

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13(1), 118–124 (2002).
[CrossRef]

N. J. Phys. (1)

A. K. Sharma and G. J. Mohr, “Theoretical understanding of an alternating dielectric multilayer-based fiber optic spr sensor and its application to gas sensing,” N. J. Phys. 10, 023039 (2008).
[CrossRef]

Opt. Eng. (1)

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and Meyrueis, “Wavelength response of a surface plasmon resonance palladium coated optic fiber,” Opt. Eng. 50(1), 014403 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Plasmonics (1)

A. K. Sharma and B. D. Gupta, “Comparison of performance parameters of conventional and nano-plasmonic fiber optic sensors,” Plasmonics 2(2), 51–54 (2007).
[CrossRef]

Sens. Actuators A (2)

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited spr optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125(2), 296–303 (2006).
[CrossRef]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159(1), 24–32 (2010).
[CrossRef]

Sens. Actuators B (8)

C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B 113(1), 169–176 (2006).
[CrossRef]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12(3), 213–220 (1993).
[CrossRef]

D. Luna-Moreno, D. Monzon-Hernandez, J. Villatoro, and G. Badenes, “Optical fiber hydrogen sensor based on core diameter mismatch and annealed pd-au thin films,” Sens. Actuators B 125(1), 66–71 (2007).
[CrossRef]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing mg-based metal hydrides,” Sens. Actuators B 123(1), 538–545 (2007).
[CrossRef]

X. T. Wei, T. Wei, H. Xiao, and Y. S. Lin, “Nano-structured pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B 134(2), 687–693 (2008).
[CrossRef]

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56(1–2), 158–163 (1999).
[CrossRef]

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B 110(1), 23–27 (2005).
[CrossRef]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B 60(1), 27–34 (1999).
[CrossRef]

Thin Solid Films (1)

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Z. Phys. (1)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Other (2)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of the way the sensitive material is deposited on the fiber core, after removing the cladding.

Fig. 2
Fig. 2

(a) The transmitted light intensity as a function of the wavelength for different thickness of SiO 2. The transducer is a multilayer composed of 35 nm Ag / d2 nm SiO 2/ 3 nm Pd. (NA = 0.22, core radius = 100 μm, L = 1 cm). (b) The transmitted light intensity as a function of the wavelength, where the transducer is a 10 nm Pd layer (NA = 0.22, core radius = 100 μm, L = 2 cm)

Fig. 3
Fig. 3

(a) The electric field (E //) distribution into a multilayer made of 35 nm Ag / 180 nm SiO 2 / 3 nm Pd for the metallic (line) and hydrogenated state (dash line) at the resonance (θSPR,Pd = 79.73° and 66.68° for λ =670.64 nm (red and pink for polarization p and s, respectively) and 855.65 nm (black), respectively). (b) Reflectance as a function of the angle theta (0° corresponds to the normal incidence) for p and s-polarization at different wavelengths.

Fig. 4
Fig. 4

Reflectance of a multilayer made of 35 nm Ag / d2 nm SiO 2 / 3 nm Pd for a wavelength of 670 nm. The lines and dash lines represent the metallic and hydrogenated state, respectively.

Fig. 5
Fig. 5

Sensitivity as function of (a) the SiO 2 thickness for different Ag thicknesses, (b) of the Ag thickness for different Pd thicknesses and (c) of the Pd thickness for different Ag and SiO 2 thicknesses.

Fig. 6
Fig. 6

Normalized light intensity as a function of the wavelength for (a) different thickness (d3) of Pd and (b) different thickness (d1) of Ag. The transducer is a multilayer made of d1 nm Ag / d2 nm SiO 2 / d3 nm Pd. (NA = 0.22, core radius = 100 μm, L = 1 cm). The lines and dash lines represent the metallic and hydrogenated state, respectively.

Fig. 7
Fig. 7

Normalized light intensity as a function of the wavelength for (a) different lengths (the core radius, and the NA is 100 μm and 0.22, respectively) for (b) different fiber NA (the core radius, and the deposit length is 100 μm and 1 cm, respectively). The transducer layer is made of 35 nm Ag / 140 nm SiO 2 / 3 nm Pd. The lines and dash lines represent the metallic and hydrogenated state, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I out , λ = 1 / 2 ( θ c 90 | r p ( θ ) | 2 N I 0 , λ ( θ in ) d θ + θ c 90 | r s ( θ ) | 2 N I 0 , λ ( θ in ) ) d θ
N = L / ( D × tan θ )

Metrics