Abstract

Following direct femtosecond laser pulse irradiation, we produce a unique grating structure over a large area superimposed by finer nanostructures on a silicon wafer. We study, for the first time, the antireflection effect of this femtosecond laser-induced periodic surface structures (FLIPSSs) in the wavelength range of 250 - 2500 nm. Our study shows that the FLIPSSs suppress both the total hemispherical and specular polarized reflectance of silicon surface significantly over the entire studied wavelength range. The total polarized reflectance of the processed surface is reduced by a factor of about 3.5 in the visible and 7 in the UV compared to an untreated sample. The antireflection effect of the FLIPSS surface is broadband and the suppression stays to the longest wavelength (2500 nm) studied here although the antireflection effect in the infrared is weaker than in the visible. Our FLIPSS structures are free of chemical contamination, highly durable, and easily controllable in size.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
    [CrossRef]
  2. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
    [CrossRef]
  3. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
    [CrossRef] [PubMed]
  4. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
    [CrossRef] [PubMed]
  5. T. K. Wang and J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces-III. Undoped silicon: the normal direction in shallow lamellar gratings,” Infrared Phys. 32, 477–488 (1991).
    [CrossRef]
  6. T. K. Wang and J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces: IV. Undoped silicon: Normal direction in deep lamellar gratings,” Appl. Opt. 31(6), 732–736 (1992).
    [CrossRef] [PubMed]
  7. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993).
    [CrossRef] [PubMed]
  8. S. Hava, M. Auslender, and D. Rabinovich, “Operator approach to electromagnetic coupled-wave calculations of lamellar gratings: infrared optical properties of intrinsic silicon gratings,” Appl. Opt. 33(21), 4807–4813 (1994).
    [CrossRef] [PubMed]
  9. M. Auslender, D. Levy, and S. Hava, “One-dimensional antireflection gratings in (100) silicon: a numerical study,” Appl. Opt. 37(2), 369–373 (1998).
    [CrossRef] [PubMed]
  10. S. Hava, J. Ivri, and M. Auslender, “Reflection of infrared radiation from lamellar gratings on a silicon wafer,” J. Appl. Phys. 85(11), 7893–7898 (1999).
    [CrossRef]
  11. D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror/absorber for visible wavelengths based on a silicon subwavelength grating: design and fabrication,” Appl. Opt. 37(13), 2534–2541 (1998).
    [CrossRef] [PubMed]
  12. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26(6), 1142–1146 (1987).
    [CrossRef] [PubMed]
  13. R. E. Smith, M. E. Warren, J. R. Wendt, and G. A. Vawter, “Polarization-sensitive subwavelength antireflection surfaces on a semiconductor for 975 nm,” Opt. Lett. 21(15), 1201–1203 (1996).
    [CrossRef] [PubMed]
  14. J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
    [CrossRef]
  15. F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1429–1432 (2004).
  16. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005).
    [CrossRef] [PubMed]
  17. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecondlaser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [CrossRef]
  18. G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009).
    [CrossRef]
  19. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
    [CrossRef]
  20. A. Y. Vorobyev and C. Guo, “Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals,” J. Appl. Phys. 103(4), 043513 (2008).
    [CrossRef]
  21. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4–6), 379–388 (2004).
    [CrossRef]
  22. M. Auslender and S. Hava, “Zero infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption,” Infrared Phys. Technol. 36(7), 1077–1088 (1995).
    [CrossRef]
  23. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef] [PubMed]
  24. D. H. Raguin and G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32(14), 2582–2598 (1993).
    [CrossRef] [PubMed]
  25. E. N. Glytsis and T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31(22), 4459–4470 (1992).
    [CrossRef] [PubMed]
  26. F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, “Influence of microroughness on emissivity,” J. Appl. Phys. 96(5), 2656–2664 (2004).
    [CrossRef]
  27. C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
    [CrossRef] [PubMed]

2009 (2)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecondlaser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009).
[CrossRef]

2008 (1)

A. Y. Vorobyev and C. Guo, “Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals,” J. Appl. Phys. 103(4), 043513 (2008).
[CrossRef]

2007 (2)

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[CrossRef]

2005 (2)

R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005).
[CrossRef] [PubMed]

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

2004 (3)

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, “Influence of microroughness on emissivity,” J. Appl. Phys. 96(5), 2656–2664 (2004).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4–6), 379–388 (2004).
[CrossRef]

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1429–1432 (2004).

1999 (1)

S. Hava, J. Ivri, and M. Auslender, “Reflection of infrared radiation from lamellar gratings on a silicon wafer,” J. Appl. Phys. 85(11), 7893–7898 (1999).
[CrossRef]

1998 (2)

1996 (1)

1995 (1)

M. Auslender and S. Hava, “Zero infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption,” Infrared Phys. Technol. 36(7), 1077–1088 (1995).
[CrossRef]

1994 (1)

1993 (2)

1992 (2)

1991 (1)

T. K. Wang and J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces-III. Undoped silicon: the normal direction in shallow lamellar gratings,” Infrared Phys. 32, 477–488 (1991).
[CrossRef]

1988 (2)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[CrossRef] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

1983 (2)

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[CrossRef]

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

Anhut, T.

Auslender, M.

S. Hava, J. Ivri, and M. Auslender, “Reflection of infrared radiation from lamellar gratings on a silicon wafer,” J. Appl. Phys. 85(11), 7893–7898 (1999).
[CrossRef]

M. Auslender, D. Levy, and S. Hava, “One-dimensional antireflection gratings in (100) silicon: a numerical study,” Appl. Opt. 37(2), 369–373 (1998).
[CrossRef] [PubMed]

M. Auslender and S. Hava, “Zero infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption,” Infrared Phys. Technol. 36(7), 1077–1088 (1995).
[CrossRef]

S. Hava, M. Auslender, and D. Rabinovich, “Operator approach to electromagnetic coupled-wave calculations of lamellar gratings: infrared optical properties of intrinsic silicon gratings,” Appl. Opt. 33(21), 4807–4813 (1994).
[CrossRef] [PubMed]

Bae, S. Y.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Bloch, A. N.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[CrossRef]

Bonse, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecondlaser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

Brundrett, D. L.

Carminati, R.

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, “Influence of microroughness on emissivity,” J. Appl. Phys. 96(5), 2656–2664 (2004).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4–6), 379–388 (2004).
[CrossRef]

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Costache, F.

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1429–1432 (2004).

Dement’eva, Yu. S.

G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009).
[CrossRef]

Dyukin, R. V.

G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009).
[CrossRef]

Gaylord, T. K.

Gebhart, B.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
[CrossRef] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[CrossRef] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

Ghbara, T.

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, “Influence of microroughness on emissivity,” J. Appl. Phys. 96(5), 2656–2664 (2004).
[CrossRef]

Ghmari, F.

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, “Influence of microroughness on emissivity,” J. Appl. Phys. 96(5), 2656–2664 (2004).
[CrossRef]

Glytsis, E. N.

Golovan, L. A.

G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009).
[CrossRef]

Greffet, J. J.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4–6), 379–388 (2004).
[CrossRef]

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, “Influence of microroughness on emissivity,” J. Appl. Phys. 96(5), 2656–2664 (2004).
[CrossRef]

Guo, C.

A. Y. Vorobyev and C. Guo, “Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals,” J. Appl. Phys. 103(4), 043513 (2008).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[CrossRef]

Hava, S.

S. Hava, J. Ivri, and M. Auslender, “Reflection of infrared radiation from lamellar gratings on a silicon wafer,” J. Appl. Phys. 85(11), 7893–7898 (1999).
[CrossRef]

M. Auslender, D. Levy, and S. Hava, “One-dimensional antireflection gratings in (100) silicon: a numerical study,” Appl. Opt. 37(2), 369–373 (1998).
[CrossRef] [PubMed]

M. Auslender and S. Hava, “Zero infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption,” Infrared Phys. Technol. 36(7), 1077–1088 (1995).
[CrossRef]

S. Hava, M. Auslender, and D. Rabinovich, “Operator approach to electromagnetic coupled-wave calculations of lamellar gratings: infrared optical properties of intrinsic silicon gratings,” Appl. Opt. 33(21), 4807–4813 (1994).
[CrossRef] [PubMed]

Hesketh, P. J.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[CrossRef] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
[CrossRef] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Ivri, J.

S. Hava, J. Ivri, and M. Auslender, “Reflection of infrared radiation from lamellar gratings on a silicon wafer,” J. Appl. Phys. 85(11), 7893–7898 (1999).
[CrossRef]

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Joulain, K.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4–6), 379–388 (2004).
[CrossRef]

Kashkarov, P. K.

G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009).
[CrossRef]

Kimura, Y.

König, K.

Kouteva-Arguirova, S.

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1429–1432 (2004).

Krüger, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecondlaser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

Laroche, M.

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, “Influence of microroughness on emissivity,” J. Appl. Phys. 96(5), 2656–2664 (2004).
[CrossRef]

Le Harzic, R.

Lee, C.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Levy, D.

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[CrossRef]

Manohara, H.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Marquier, F.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4–6), 379–388 (2004).
[CrossRef]

Martsinovsky, G. A.

G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009).
[CrossRef]

Mobasser, S.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Morris, G. M.

Mulet, J. P.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4–6), 379–388 (2004).
[CrossRef]

Nishida, N.

Ohta, Y.

Ono, Y.

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Preston, J. F.

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

Rabinovich, D.

Raguin, D. H.

Reif, J.

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1429–1432 (2004).

Riemann, I.

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecondlaser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

Sauer, D.

Schuck, H.

Shandybina, G. D.

G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009).
[CrossRef]

Sheng, P.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[CrossRef]

Sipe, J. E.

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

Smith, R. E.

Stepleman, R. S.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[CrossRef]

van Driel, H. M.

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

Vawter, G. A.

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals,” J. Appl. Phys. 103(4), 043513 (2008).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[CrossRef]

Wang, T. K.

T. K. Wang and J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces: IV. Undoped silicon: Normal direction in deep lamellar gratings,” Appl. Opt. 31(6), 732–736 (1992).
[CrossRef] [PubMed]

T. K. Wang and J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces-III. Undoped silicon: the normal direction in shallow lamellar gratings,” Infrared Phys. 32, 477–488 (1991).
[CrossRef]

Warren, M. E.

Wendt, J. R.

Young, J. F.

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

Zabotnov, S. V.

G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009).
[CrossRef]

Zemel, J. N.

T. K. Wang and J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces: IV. Undoped silicon: Normal direction in deep lamellar gratings,” Appl. Opt. 31(6), 732–736 (1992).
[CrossRef] [PubMed]

T. K. Wang and J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces-III. Undoped silicon: the normal direction in shallow lamellar gratings,” Infrared Phys. 32, 477–488 (1991).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
[CrossRef] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[CrossRef] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

Appl. Opt. (8)

T. K. Wang and J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces: IV. Undoped silicon: Normal direction in deep lamellar gratings,” Appl. Opt. 31(6), 732–736 (1992).
[CrossRef] [PubMed]

D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993).
[CrossRef] [PubMed]

S. Hava, M. Auslender, and D. Rabinovich, “Operator approach to electromagnetic coupled-wave calculations of lamellar gratings: infrared optical properties of intrinsic silicon gratings,” Appl. Opt. 33(21), 4807–4813 (1994).
[CrossRef] [PubMed]

M. Auslender, D. Levy, and S. Hava, “One-dimensional antireflection gratings in (100) silicon: a numerical study,” Appl. Opt. 37(2), 369–373 (1998).
[CrossRef] [PubMed]

D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror/absorber for visible wavelengths based on a silicon subwavelength grating: design and fabrication,” Appl. Opt. 37(13), 2534–2541 (1998).
[CrossRef] [PubMed]

Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26(6), 1142–1146 (1987).
[CrossRef] [PubMed]

D. H. Raguin and G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32(14), 2582–2598 (1993).
[CrossRef] [PubMed]

E. N. Glytsis and T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31(22), 4459–4470 (1992).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1429–1432 (2004).

Infrared Phys. (1)

T. K. Wang and J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces-III. Undoped silicon: the normal direction in shallow lamellar gratings,” Infrared Phys. 32, 477–488 (1991).
[CrossRef]

Infrared Phys. Technol. (1)

M. Auslender and S. Hava, “Zero infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption,” Infrared Phys. Technol. 36(7), 1077–1088 (1995).
[CrossRef]

J. Appl. Phys. (5)

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals,” J. Appl. Phys. 103(4), 043513 (2008).
[CrossRef]

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, “Influence of microroughness on emissivity,” J. Appl. Phys. 96(5), 2656–2664 (2004).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecondlaser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

S. Hava, J. Ivri, and M. Auslender, “Reflection of infrared radiation from lamellar gratings on a silicon wafer,” J. Appl. Phys. 85(11), 7893–7898 (1999).
[CrossRef]

Nano Lett. (1)

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Nature (1)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

Opt. Commun. (1)

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4–6), 379–388 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[CrossRef] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
[CrossRef] [PubMed]

Semiconductors (1)

G. A. Martsinovsky, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) SEM image of femtosecond laser-induced periodic surface structures on silicon. (b)-(d) Photographs show that a silicon sample exhibits various shades of dark colors at different viewing angles.

Fig. 2
Fig. 2

Wavelength effect of the polarized-light total and specular reflectance at an incidence angle of 6° from the silicon sample structured with FLIPSSs. For comparison, reflectance of an untreated sample is also shown.

Metrics