Abstract

We report on ITO-free large-area organic light-emitting diodes (OLEDs) fabricated on glass substrates comprising α-NPD as a hole transport layer (HTL) and coevaporated CBP:Ir(ppy)3 as the emission layer. Indium-tin-oxide (ITO) was replaced with a conductive polymer electrode and an electroplated thick metal grid was used to improve the homogeneity of the potential distribution over the transparent polymer electrode. An electrical model of a metal grid integrated OLED shows the benefits of the use of metal grids in terms of improving the uniformity of the light emitted as the area of the OLED increases as well as the conductivity of the transparent electrode decreases. By integrating metal grids with polymer electrodes, the luminance increases more than 24% at 6 V and 45% at 7 V compared to the polymer electrode devices without a metal grid. This implies that a lower voltage can be applied to achieve the same luminance, hence lowering the power consumption. Furthermore, metal grid integrated OLEDs exhibited less variation in light emission compared to devices without a metal grid.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
    [CrossRef]
  2. K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. (Deerfield Beach Fla.) 22(5), 572–582 (2010).
    [CrossRef]
  3. A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, and B. Kippelen, “Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes,” Adv. Funct. Mater. 18(19), 3056–3062 (2008).
    [CrossRef]
  4. K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
    [CrossRef]
  5. R. Bathelt, D. Buchhauser, C. Gärditz, R. Paetzold, and P. Wellmann, “Light extraction from OLEDs for lighting applications through light scattering,” Org. Electron. 8(4), 293–299 (2007).
    [CrossRef]
  6. T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1849–1853 (2010).
    [CrossRef]
  7. Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
    [CrossRef]
  8. S. Choi, W. J. Potscavage, and B. Kippelen, “ITO-free large-area organic solar cells,” Opt. Express 18(S3Suppl 3), A458–A466 (2010).
    [CrossRef] [PubMed]
  9. R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
    [CrossRef]
  10. J. R. Sheats and D. B. Roitman, “Failure modes in polymer-based light-emitting diodes,” Synth. Met. 95(2), 79–85 (1998).
    [CrossRef]
  11. K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(3), 441–444 (2007).
    [CrossRef]
  12. D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
    [CrossRef] [PubMed]
  13. H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, “A transparent, flexible, low-temperature, and solution-processible graphene composite electrode,” Adv. Funct. Mater. 20(17), 2893–2902 (2010).
    [CrossRef]
  14. K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
    [CrossRef]
  15. K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
    [CrossRef]
  16. J. Park, J. Lee, D. Shin, and S. Park, “Luminance uniformity of large-area OLEDs with an auxiliary metal electrode,” J. Disp. Technol. 5(8), 306–311 (2009).
    [CrossRef]
  17. S. Harkema, S. Mennema, M. Barink, H. Rooms, J. S. Wilson, T. van Mol, and D. Bollen, “Large area ITO-free flexible white OLEDs with Orgacon PEDOT:PSS and printed metal shunting lines,” in Organic Light Emitting Materials and Devices XIII, (SPIE, 2009), 74150T–74158.
  18. M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(10), 1391–1396 (2007).
    [CrossRef]
  19. S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
    [CrossRef]
  20. S. Choi, W. J. Potscavage, Jr., and B. Kippelen, “Area-scaling of organic solar cells and integrated modules,” in Organic Materials and Devices for Sustainable Energy Systems, J. Xue, ed. (Mat. Res. Soc. Symp. Proc., Boston, MA, USA, 2009), p. S06.
  21. A. Sharma, P. J. Hotchkiss, S. R. Marder, and B. Kippelen, “Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes,” J. Appl. Phys. 105(8), 084507 (2009).
    [CrossRef]
  22. M.-H. Ho, M.-T. Hsieh, K.-H. Lin, T.-M. Chen, J.-F. Chen, and C. H. Chen, “Study of efficient and stable organic light-emitting diodes with 2-methyl-9,10-di(2-naphthyl)anthracene as hole-transport material by admittance spectroscopy,” Appl. Phys. Lett. 94(2), 023306 (2009).
    [CrossRef]

2010

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. (Deerfield Beach Fla.) 22(5), 572–582 (2010).
[CrossRef]

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1849–1853 (2010).
[CrossRef]

S. Choi, W. J. Potscavage, and B. Kippelen, “ITO-free large-area organic solar cells,” Opt. Express 18(S3Suppl 3), A458–A466 (2010).
[CrossRef] [PubMed]

H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, “A transparent, flexible, low-temperature, and solution-processible graphene composite electrode,” Adv. Funct. Mater. 20(17), 2893–2902 (2010).
[CrossRef]

2009

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[CrossRef] [PubMed]

J. Park, J. Lee, D. Shin, and S. Park, “Luminance uniformity of large-area OLEDs with an auxiliary metal electrode,” J. Disp. Technol. 5(8), 306–311 (2009).
[CrossRef]

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[CrossRef]

S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
[CrossRef]

A. Sharma, P. J. Hotchkiss, S. R. Marder, and B. Kippelen, “Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes,” J. Appl. Phys. 105(8), 084507 (2009).
[CrossRef]

M.-H. Ho, M.-T. Hsieh, K.-H. Lin, T.-M. Chen, J.-F. Chen, and C. H. Chen, “Study of efficient and stable organic light-emitting diodes with 2-methyl-9,10-di(2-naphthyl)anthracene as hole-transport material by admittance spectroscopy,” Appl. Phys. Lett. 94(2), 023306 (2009).
[CrossRef]

2008

A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, and B. Kippelen, “Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes,” Adv. Funct. Mater. 18(19), 3056–3062 (2008).
[CrossRef]

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[CrossRef]

2007

M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(10), 1391–1396 (2007).
[CrossRef]

K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(3), 441–444 (2007).
[CrossRef]

R. Bathelt, D. Buchhauser, C. Gärditz, R. Paetzold, and P. Wellmann, “Light extraction from OLEDs for lighting applications through light scattering,” Org. Electron. 8(4), 293–299 (2007).
[CrossRef]

2006

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[CrossRef]

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[CrossRef]

2003

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

1998

J. R. Sheats and D. B. Roitman, “Failure modes in polymer-based light-emitting diodes,” Synth. Met. 95(2), 79–85 (1998).
[CrossRef]

Bathelt, R.

R. Bathelt, D. Buchhauser, C. Gärditz, R. Paetzold, and P. Wellmann, “Light extraction from OLEDs for lighting applications through light scattering,” Org. Electron. 8(4), 293–299 (2007).
[CrossRef]

Beeckman, J.

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[CrossRef]

Bryce, M. R.

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. (Deerfield Beach Fla.) 22(5), 572–582 (2010).
[CrossRef]

Buchhauser, D.

R. Bathelt, D. Buchhauser, C. Gärditz, R. Paetzold, and P. Wellmann, “Light extraction from OLEDs for lighting applications through light scattering,” Org. Electron. 8(4), 293–299 (2007).
[CrossRef]

Chang, H.

H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, “A transparent, flexible, low-temperature, and solution-processible graphene composite electrode,” Adv. Funct. Mater. 20(17), 2893–2902 (2010).
[CrossRef]

Chen, C. H.

M.-H. Ho, M.-T. Hsieh, K.-H. Lin, T.-M. Chen, J.-F. Chen, and C. H. Chen, “Study of efficient and stable organic light-emitting diodes with 2-methyl-9,10-di(2-naphthyl)anthracene as hole-transport material by admittance spectroscopy,” Appl. Phys. Lett. 94(2), 023306 (2009).
[CrossRef]

Chen, J.-F.

M.-H. Ho, M.-T. Hsieh, K.-H. Lin, T.-M. Chen, J.-F. Chen, and C. H. Chen, “Study of efficient and stable organic light-emitting diodes with 2-methyl-9,10-di(2-naphthyl)anthracene as hole-transport material by admittance spectroscopy,” Appl. Phys. Lett. 94(2), 023306 (2009).
[CrossRef]

Chen, T.-M.

M.-H. Ho, M.-T. Hsieh, K.-H. Lin, T.-M. Chen, J.-F. Chen, and C. H. Chen, “Study of efficient and stable organic light-emitting diodes with 2-methyl-9,10-di(2-naphthyl)anthracene as hole-transport material by admittance spectroscopy,” Appl. Phys. Lett. 94(2), 023306 (2009).
[CrossRef]

Cheylan, S.

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[CrossRef] [PubMed]

Choi, J.-M.

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1849–1853 (2010).
[CrossRef]

Choi, S.

S. Choi, W. J. Potscavage, and B. Kippelen, “ITO-free large-area organic solar cells,” Opt. Express 18(S3Suppl 3), A458–A466 (2010).
[CrossRef] [PubMed]

S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
[CrossRef]

Domercq, B.

A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, and B. Kippelen, “Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes,” Adv. Funct. Mater. 18(19), 3056–3062 (2008).
[CrossRef]

Elschner, A.

K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(3), 441–444 (2007).
[CrossRef]

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[CrossRef]

Fehse, K.

K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(3), 441–444 (2007).
[CrossRef]

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[CrossRef]

Forrest, S. R.

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

Gärditz, C.

R. Bathelt, D. Buchhauser, C. Gärditz, R. Paetzold, and P. Wellmann, “Light extraction from OLEDs for lighting applications through light scattering,” Org. Electron. 8(4), 293–299 (2007).
[CrossRef]

Geffroy, B.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[CrossRef]

Ghosh, D. S.

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[CrossRef] [PubMed]

Guo, L. J.

M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(10), 1391–1396 (2007).
[CrossRef]

Haldi, A.

A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, and B. Kippelen, “Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes,” Adv. Funct. Mater. 18(19), 3056–3062 (2008).
[CrossRef]

Hayden, L. E.

A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, and B. Kippelen, “Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes,” Adv. Funct. Mater. 18(19), 3056–3062 (2008).
[CrossRef]

Henseler, D.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Heuser, K.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Ho, M.-H.

M.-H. Ho, M.-T. Hsieh, K.-H. Lin, T.-M. Chen, J.-F. Chen, and C. H. Chen, “Study of efficient and stable organic light-emitting diodes with 2-methyl-9,10-di(2-naphthyl)anthracene as hole-transport material by admittance spectroscopy,” Appl. Phys. Lett. 94(2), 023306 (2009).
[CrossRef]

Hotchkiss, P. J.

A. Sharma, P. J. Hotchkiss, S. R. Marder, and B. Kippelen, “Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes,” J. Appl. Phys. 105(8), 084507 (2009).
[CrossRef]

Hsieh, M.-T.

M.-H. Ho, M.-T. Hsieh, K.-H. Lin, T.-M. Chen, J.-F. Chen, and C. H. Chen, “Study of efficient and stable organic light-emitting diodes with 2-methyl-9,10-di(2-naphthyl)anthracene as hole-transport material by admittance spectroscopy,” Appl. Phys. Lett. 94(2), 023306 (2009).
[CrossRef]

Huang, Q.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[CrossRef]

Jain, V. K.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[CrossRef]

Jones, S. C.

A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, and B. Kippelen, “Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes,” Adv. Funct. Mater. 18(19), 3056–3062 (2008).
[CrossRef]

Kamtekar, K. T.

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. (Deerfield Beach Fla.) 22(5), 572–582 (2010).
[CrossRef]

Kang, M. G.

M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(10), 1391–1396 (2007).
[CrossRef]

Kimyonok, A.

A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, and B. Kippelen, “Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes,” Adv. Funct. Mater. 18(19), 3056–3062 (2008).
[CrossRef]

Kippelen, B.

S. Choi, W. J. Potscavage, and B. Kippelen, “ITO-free large-area organic solar cells,” Opt. Express 18(S3Suppl 3), A458–A466 (2010).
[CrossRef] [PubMed]

S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
[CrossRef]

A. Sharma, P. J. Hotchkiss, S. R. Marder, and B. Kippelen, “Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes,” J. Appl. Phys. 105(8), 084507 (2009).
[CrossRef]

A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, and B. Kippelen, “Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes,” Adv. Funct. Mater. 18(19), 3056–3062 (2008).
[CrossRef]

Koh, T.-W.

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1849–1853 (2010).
[CrossRef]

Krautz, D.

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[CrossRef] [PubMed]

le Roy, P.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[CrossRef]

Lee, J.

J. Park, J. Lee, D. Shin, and S. Park, “Luminance uniformity of large-area OLEDs with an auxiliary metal electrode,” J. Disp. Technol. 5(8), 306–311 (2009).
[CrossRef]

Lee, S.

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1849–1853 (2010).
[CrossRef]

Leo, K.

K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(3), 441–444 (2007).
[CrossRef]

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[CrossRef]

Lin, K.-H.

M.-H. Ho, M.-T. Hsieh, K.-H. Lin, T.-M. Chen, J.-F. Chen, and C. H. Chen, “Study of efficient and stable organic light-emitting diodes with 2-methyl-9,10-di(2-naphthyl)anthracene as hole-transport material by admittance spectroscopy,” Appl. Phys. Lett. 94(2), 023306 (2009).
[CrossRef]

Liu, X.

H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, “A transparent, flexible, low-temperature, and solution-processible graphene composite electrode,” Adv. Funct. Mater. 20(17), 2893–2902 (2010).
[CrossRef]

Lovenich, W.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[CrossRef]

Lövenich, W.

K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(3), 441–444 (2007).
[CrossRef]

Marder, S. R.

A. Sharma, P. J. Hotchkiss, S. R. Marder, and B. Kippelen, “Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes,” J. Appl. Phys. 105(8), 084507 (2009).
[CrossRef]

A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, and B. Kippelen, “Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes,” Adv. Funct. Mater. 18(19), 3056–3062 (2008).
[CrossRef]

Marescaux, M.

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[CrossRef]

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[CrossRef]

Mehta, D. S.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[CrossRef]

Mladenovski, S.

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[CrossRef]

Monkman, A. P.

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. (Deerfield Beach Fla.) 22(5), 572–582 (2010).
[CrossRef]

Neyts, K.

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[CrossRef]

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[CrossRef]

Nieto, A. U.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[CrossRef]

Paetzold, R.

R. Bathelt, D. Buchhauser, C. Gärditz, R. Paetzold, and P. Wellmann, “Light extraction from OLEDs for lighting applications through light scattering,” Org. Electron. 8(4), 293–299 (2007).
[CrossRef]

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Park, J.

J. Park, J. Lee, D. Shin, and S. Park, “Luminance uniformity of large-area OLEDs with an auxiliary metal electrode,” J. Disp. Technol. 5(8), 306–311 (2009).
[CrossRef]

Park, S.

J. Park, J. Lee, D. Shin, and S. Park, “Luminance uniformity of large-area OLEDs with an auxiliary metal electrode,” J. Disp. Technol. 5(8), 306–311 (2009).
[CrossRef]

Potscavage, W. J.

S. Choi, W. J. Potscavage, and B. Kippelen, “ITO-free large-area organic solar cells,” Opt. Express 18(S3Suppl 3), A458–A466 (2010).
[CrossRef] [PubMed]

S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
[CrossRef]

Prat, C.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[CrossRef]

Pruneri, V.

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[CrossRef] [PubMed]

Real, A.

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[CrossRef]

Roeger, S.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Roitman, D. B.

J. R. Sheats and D. B. Roitman, “Failure modes in polymer-based light-emitting diodes,” Synth. Met. 95(2), 79–85 (1998).
[CrossRef]

Saxena, K.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[CrossRef]

Sharma, A.

A. Sharma, P. J. Hotchkiss, S. R. Marder, and B. Kippelen, “Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes,” J. Appl. Phys. 105(8), 084507 (2009).
[CrossRef]

Sheats, J. R.

J. R. Sheats and D. B. Roitman, “Failure modes in polymer-based light-emitting diodes,” Synth. Met. 95(2), 79–85 (1998).
[CrossRef]

Shen, Y.

H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, “A transparent, flexible, low-temperature, and solution-processible graphene composite electrode,” Adv. Funct. Mater. 20(17), 2893–2902 (2010).
[CrossRef]

Shin, D.

J. Park, J. Lee, D. Shin, and S. Park, “Luminance uniformity of large-area OLEDs with an auxiliary metal electrode,” J. Disp. Technol. 5(8), 306–311 (2009).
[CrossRef]

Sun, Y.

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

Tao, X.

H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, “A transparent, flexible, low-temperature, and solution-processible graphene composite electrode,” Adv. Funct. Mater. 20(17), 2893–2902 (2010).
[CrossRef]

Walzer, K.

K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(3), 441–444 (2007).
[CrossRef]

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[CrossRef]

Wang, G.

H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, “A transparent, flexible, low-temperature, and solution-processible graphene composite electrode,” Adv. Funct. Mater. 20(17), 2893–2902 (2010).
[CrossRef]

Weck, M.

A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, and B. Kippelen, “Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes,” Adv. Funct. Mater. 18(19), 3056–3062 (2008).
[CrossRef]

Wellmann, P.

R. Bathelt, D. Buchhauser, C. Gärditz, R. Paetzold, and P. Wellmann, “Light extraction from OLEDs for lighting applications through light scattering,” Org. Electron. 8(4), 293–299 (2007).
[CrossRef]

Winnacker, A.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Wittmann, G.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

Yang, A.

H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, “A transparent, flexible, low-temperature, and solution-processible graphene composite electrode,” Adv. Funct. Mater. 20(17), 2893–2902 (2010).
[CrossRef]

Yoo, S.

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1849–1853 (2010).
[CrossRef]

Zheng, Z.

H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, “A transparent, flexible, low-temperature, and solution-processible graphene composite electrode,” Adv. Funct. Mater. 20(17), 2893–2902 (2010).
[CrossRef]

Adv. Funct. Mater.

A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R. Marder, M. Weck, and B. Kippelen, “Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes,” Adv. Funct. Mater. 18(19), 3056–3062 (2008).
[CrossRef]

H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, “A transparent, flexible, low-temperature, and solution-processible graphene composite electrode,” Adv. Funct. Mater. 20(17), 2893–2902 (2010).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(3), 441–444 (2007).
[CrossRef]

M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(10), 1391–1396 (2007).
[CrossRef]

K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. (Deerfield Beach Fla.) 22(5), 572–582 (2010).
[CrossRef]

T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, “Optical outcoupling enhancement in organic light-emitting diodes: highly conductive polymer as a low-index layer on microstructured ITO electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1849–1853 (2010).
[CrossRef]

Appl. Phys. Lett.

R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann, and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions,” Appl. Phys. Lett. 82(19), 3342–3344 (2003).
[CrossRef]

M.-H. Ho, M.-T. Hsieh, K.-H. Lin, T.-M. Chen, J.-F. Chen, and C. H. Chen, “Study of efficient and stable organic light-emitting diodes with 2-methyl-9,10-di(2-naphthyl)anthracene as hole-transport material by admittance spectroscopy,” Appl. Phys. Lett. 94(2), 023306 (2009).
[CrossRef]

J. Appl. Phys.

A. Sharma, P. J. Hotchkiss, S. R. Marder, and B. Kippelen, “Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes,” J. Appl. Phys. 105(8), 084507 (2009).
[CrossRef]

S. Choi, W. J. Potscavage, and B. Kippelen, “Area-scaling of organic solar cells,” J. Appl. Phys. 106(5), 054507 (2009).
[CrossRef]

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[CrossRef]

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[CrossRef]

J. Disp. Technol.

J. Park, J. Lee, D. Shin, and S. Park, “Luminance uniformity of large-area OLEDs with an auxiliary metal electrode,” J. Disp. Technol. 5(8), 306–311 (2009).
[CrossRef]

Nanotechnology

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[CrossRef] [PubMed]

Nat. Photonics

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

Opt. Express

Opt. Mater.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[CrossRef]

Org. Electron.

R. Bathelt, D. Buchhauser, C. Gärditz, R. Paetzold, and P. Wellmann, “Light extraction from OLEDs for lighting applications through light scattering,” Org. Electron. 8(4), 293–299 (2007).
[CrossRef]

Polym. Int.

B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[CrossRef]

Synth. Met.

J. R. Sheats and D. B. Roitman, “Failure modes in polymer-based light-emitting diodes,” Synth. Met. 95(2), 79–85 (1998).
[CrossRef]

Other

S. Choi, W. J. Potscavage, Jr., and B. Kippelen, “Area-scaling of organic solar cells and integrated modules,” in Organic Materials and Devices for Sustainable Energy Systems, J. Xue, ed. (Mat. Res. Soc. Symp. Proc., Boston, MA, USA, 2009), p. S06.

S. Harkema, S. Mennema, M. Barink, H. Rooms, J. S. Wilson, T. van Mol, and D. Bollen, “Large area ITO-free flexible white OLEDs with Orgacon PEDOT:PSS and printed metal shunting lines,” in Organic Light Emitting Materials and Devices XIII, (SPIE, 2009), 74150T–74158.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Device geometry of ITO-free large-area OLED with a grid. The grid was composed of two metal layers: sputtered Au (100 nm) and electroplated Cu (5 µm). The thin Au grid connects the PEDOT:PSS electrode to the thick Cu grid. For a device with an ITO electrode, the metal grid only consisted of electroplated copper, which made direct contact with the underlying ITO.

Fig. 2
Fig. 2

Fabrication sequences for ITO-free large-area OLED with a grid: (a) Au deposition and grid patterning; (b) seedlayers deposition and mold structure creation; (c) copper grid electroplating and mold structure removal; (d) copper grid passivation and seedlayer removal; (e) PEDOT:PSS (Clevios PH1000 followed by AI 4083) spin-coating, and organic layers and LiF/Al electrode deposition.

Fig. 3
Fig. 3

Geometry of the metal-grid integrated large-area OLED used in the electrical model.

Fig. 4
Fig. 4

Normalized current density, jZ(x) divided by jZ(s/2), as a function of normalized position coordinate (x/(s/2)) a) for different grid spacings and b) for different values of a × RΩ/sq . Note that a × RΩ/sq = 0.1 and 1.0 correspond to OLEDs fabricated with ITO only or with a polymer electrode, respectively.

Fig. 5
Fig. 5

Experimental J-V characteristics in semi-logarithmic scale (a), linear scale (b), and the luminance and EQE (c) of the ITO-free OLEDs and reference devices with ITO.

Fig. 6
Fig. 6

Photographs taken at various applied voltages. (a)–(d): ITO-free large-area OLED without a metal grid, (e)–(h): ITO-free large-area OLED with a grid.

Tables (1)

Tables Icon

Table 1 Summary of the EQE and Luminous Efficiency (cd/A) at 100 and 1000 cd/m2 for the Devices with an ITO Electrode and Devices with a Polymer Electrode (PH 1000)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

j b o t ( x ) = σ b o t V b o t ( x )
j z ( x ) = ( d b o t j b o t ( x ) )
2 V b o t ( x ) = 1 σ b o t d b o t j z ( x )
j z ( x ) = j z ( x = 0 ) + a ( V b o t ( x ) V t o p ( x ) )
V b o t ( x ) = ( 1 / a ) ( j z ( x ) j z ( 0 ) )
2 j z ( x ) a R Ω / s q j z ( x ) = 0
R Ω / s q = 1 σ b o t d b o t
j z ( x ) = j z ( 0 ) 2 ( e ( a R Ω / s q ) x + e ( a R Ω / s q ) x )

Metrics