S. Biehs, E. Rousseau, and J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett. 105, 234301 (2010).

[CrossRef]

P. Ben-Abdallah and K. Joulain, “Fundamental limits for noncontact transfers between two bodies,” Phys. Rev. B 82, 121419 (2010).

[CrossRef]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).

[CrossRef]
[PubMed]

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the planck blackbody radiation law at nanoscale breakdown of the planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).

[CrossRef]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).

[CrossRef]

S. Basu, Z. Zhang, and C. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).

[CrossRef]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

[CrossRef]

M. Francoeur and M. P. Menguc, “Role of fluctuational electrodynamics in near-field radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transfer 109, 280–293 (2008).

[CrossRef]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy.” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

[CrossRef]

M. Francoeur, M. Menguc, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett. 93, 043109 (2008).

[CrossRef]

A. Narayanaswamy, S. Shen, and G. Chen, “Near–field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).

[CrossRef]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding plancks blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).

[CrossRef]

A. Narayanaswamy and G. Chen, “Thermal near–field radiative transfer between two spheres,” Phys. Rev. B 77, 075125 (2008).

[CrossRef]

V. Yannopapas and N. Vitanov, “Spontaneous emission of a two-level atom placed within clusters of metallic nanoparticles,” J. Phys.: Condens. Matter 19, 096210 (2007).

[CrossRef]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. of Appl. Phys. 100, 063704 (2006).

[CrossRef]

H. Kimura, L. Kolokolova, and I. Mann, “Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres,” Astron. Astrophys. 449, 1243–1254 (2006).

[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine, K. Joulain, J. Mulet, Y. Chen, and J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).

[CrossRef]
[PubMed]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).

[CrossRef]

A. Zayats, I. Smolyaninov, and A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).

[CrossRef]

R. Yang, A. Narayanaswamy, and G. Chen, “Surface-plasmon coupled nonequilibrium thermoelectric refrigerators and power generators,” J. Comput. Theor. Nanos. 2, 75–87 (2005).

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics.” Nature 424, 824–830 (2003).

[CrossRef]
[PubMed]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative transfer at nanometric distances,” Microscale Thermo. Eng. 6, 209–222 (2002).

[CrossRef]

N. A. Gumerov and R. Duraiswami, “Computation of scattering from n spheres using multipole reexpansion,” J. Acoust. Soc. Am. 112, 2688–2701 (2002).

[CrossRef]

M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).

[CrossRef]

J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys.: Condens. Matter 11, 6621–6633 (1999).

[CrossRef]

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241 (1998).

[CrossRef]

W. C. Chew, “Efficient ways to compute the vector addition theorem,” J. Electromagn. Wave 7, 651–665 (1993).

[CrossRef]

W. C. Chew, “Derivation of the vector addition theorem,” Microw. Opt. Technol. Let. 3, 256–260 (1990).

[CrossRef]

W. Chew, “A derivation of the vector addition theorem,” Microw. Opt. Technol. Let. 3, 256–260 (1990).

[CrossRef]

U. Durig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).

[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).

[CrossRef]

C. Hargreaves, “Radiative transfer between closely spaced bodies,” Philips Res. Rep. Suppl. 5, 1–80 (1973).

J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres Part I–multipole expansion and ray-optical solutions” IEEE Trans. Antenn. Propag. AP-19, 378–390 (1971).

[CrossRef]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).

[CrossRef]

C. Liang and Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481 (1967).

O. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20, 33–40 (1962).

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19, 15–24 (1961).

A. Kittel, U. Wischnath, J. Welker, O. Huth, F. Ruting, and S. Biehs, “Near-field thermal imaging of nanostructured surfaces,” Appl. Phys. Lett. 93, 193109 (2008).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics.” Nature 424, 824–830 (2003).

[CrossRef]
[PubMed]

S. Basu, Z. Zhang, and C. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).

[CrossRef]

P. Ben-Abdallah and K. Joulain, “Fundamental limits for noncontact transfers between two bodies,” Phys. Rev. B 82, 121419 (2010).

[CrossRef]

S. Biehs, E. Rousseau, and J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett. 105, 234301 (2010).

[CrossRef]

A. Kittel, U. Wischnath, J. Welker, O. Huth, F. Ruting, and S. Biehs, “Near-field thermal imaging of nanostructured surfaces,” Appl. Phys. Lett. 93, 193109 (2008).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).

[CrossRef]

J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres Part I–multipole expansion and ray-optical solutions” IEEE Trans. Antenn. Propag. AP-19, 378–390 (1971).

[CrossRef]

J. H. Bruning and Y. Lo, “Multiple scattering by spheres” Tech. Rep. Antenna Laboratory Report No. 69-5, University of Illinois, Urbana, Illinois (1969).

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241 (1998).

[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine, K. Joulain, J. Mulet, Y. Chen, and J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).

[CrossRef]
[PubMed]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. of Appl. Phys. 100, 063704 (2006).

[CrossRef]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).

[CrossRef]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative transfer at nanometric distances,” Microscale Thermo. Eng. 6, 209–222 (2002).

[CrossRef]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).

[CrossRef]
[PubMed]

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the planck blackbody radiation law at nanoscale breakdown of the planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).

[CrossRef]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding plancks blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).

[CrossRef]

A. Narayanaswamy and G. Chen, “Thermal near–field radiative transfer between two spheres,” Phys. Rev. B 77, 075125 (2008).

[CrossRef]

A. Narayanaswamy, S. Shen, and G. Chen, “Near–field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).

[CrossRef]

R. Yang, A. Narayanaswamy, and G. Chen, “Surface-plasmon coupled nonequilibrium thermoelectric refrigerators and power generators,” J. Comput. Theor. Nanos. 2, 75–87 (2005).

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).

[CrossRef]

A. Narayanaswamy and G. Chen, “Direct computation of thermal emission from nanostructures,” Annual Reviews of Heat Transfer (Begell House, 2005), vol. 14, pp. 169–195.

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the planck blackbody radiation law at nanoscale breakdown of the planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).

[CrossRef]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding plancks blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).

[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine, K. Joulain, J. Mulet, Y. Chen, and J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).

[CrossRef]
[PubMed]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).

[CrossRef]

W. Chew, “A derivation of the vector addition theorem,” Microw. Opt. Technol. Let. 3, 256–260 (1990).

[CrossRef]

W. Chew, E. Michielssen, J. Song, and J. Jin, Fast and efficient algorithms in computational electromagnetics , (Artech House, Inc., 2001).

W. C. Chew, “Efficient ways to compute the vector addition theorem,” J. Electromagn. Wave 7, 651–665 (1993).

[CrossRef]

W. C. Chew, “Derivation of the vector addition theorem,” Microw. Opt. Technol. Let. 3, 256–260 (1990).

[CrossRef]

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).

[CrossRef]

R. Crane, “Cooperative scattering by dielectric spheres,” Tech. Rep. , Lincoln Laboratory, M.I.T, Lexington, MA (1967).

O. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20, 33–40 (1962).

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine, K. Joulain, J. Mulet, Y. Chen, and J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).

[CrossRef]
[PubMed]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics.” Nature 424, 824–830 (2003).

[CrossRef]
[PubMed]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy.” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

[CrossRef]

N. A. Gumerov and R. Duraiswami, “Computation of scattering from n spheres using multipole reexpansion,” J. Acoust. Soc. Am. 112, 2688–2701 (2002).

[CrossRef]

U. Durig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics.” Nature 424, 824–830 (2003).

[CrossRef]
[PubMed]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine, K. Joulain, J. Mulet, Y. Chen, and J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).

[CrossRef]
[PubMed]

M. Francoeur and M. P. Menguc, “Role of fluctuational electrodynamics in near-field radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transfer 109, 280–293 (2008).

[CrossRef]

M. Francoeur, M. Menguc, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett. 93, 043109 (2008).

[CrossRef]

S. Basu, Z. Zhang, and C. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).

[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine, K. Joulain, J. Mulet, Y. Chen, and J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).

[CrossRef]
[PubMed]

S. Biehs, E. Rousseau, and J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett. 105, 234301 (2010).

[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine, K. Joulain, J. Mulet, Y. Chen, and J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).

[CrossRef]
[PubMed]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).

[CrossRef]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. of Appl. Phys. 100, 063704 (2006).

[CrossRef]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).

[CrossRef]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative transfer at nanometric distances,” Microscale Thermo. Eng. 6, 209–222 (2002).

[CrossRef]

N. A. Gumerov and R. Duraiswami, “Computation of scattering from n spheres using multipole reexpansion,” J. Acoust. Soc. Am. 112, 2688–2701 (2002).

[CrossRef]

C. Hargreaves, “Radiative transfer between closely spaced bodies,” Philips Res. Rep. Suppl. 5, 1–80 (1973).

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the planck blackbody radiation law at nanoscale breakdown of the planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).

[CrossRef]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding plancks blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).

[CrossRef]

A. Kittel, U. Wischnath, J. Welker, O. Huth, F. Ruting, and S. Biehs, “Near-field thermal imaging of nanostructured surfaces,” Appl. Phys. Lett. 93, 193109 (2008).

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

[CrossRef]

J. D. Jackson, Classical Electrodynamics (John Wiley, 1998).

W. Chew, E. Michielssen, J. Song, and J. Jin, Fast and efficient algorithms in computational electromagnetics , (Artech House, Inc., 2001).

P. Ben-Abdallah and K. Joulain, “Fundamental limits for noncontact transfers between two bodies,” Phys. Rev. B 82, 121419 (2010).

[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine, K. Joulain, J. Mulet, Y. Chen, and J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).

[CrossRef]
[PubMed]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).

[CrossRef]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative transfer at nanometric distances,” Microscale Thermo. Eng. 6, 209–222 (2002).

[CrossRef]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).

[CrossRef]

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241 (1998).

[CrossRef]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

[CrossRef]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic,1969).

H. Kimura, L. Kolokolova, and I. Mann, “Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres,” Astron. Astrophys. 449, 1243–1254 (2006).

[CrossRef]

A. Kittel, U. Wischnath, J. Welker, O. Huth, F. Ruting, and S. Biehs, “Near-field thermal imaging of nanostructured surfaces,” Appl. Phys. Lett. 93, 193109 (2008).

H. Kimura, L. Kolokolova, and I. Mann, “Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres,” Astron. Astrophys. 449, 1243–1254 (2006).

[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).

[CrossRef]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. of Appl. Phys. 100, 063704 (2006).

[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine, K. Joulain, J. Mulet, Y. Chen, and J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).

[CrossRef]
[PubMed]

C. Liang and Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481 (1967).

J. H. Bruning and Y. Lo, “Multiple scattering by spheres” Tech. Rep. Antenna Laboratory Report No. 69-5, University of Illinois, Urbana, Illinois (1969).

J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres Part I–multipole expansion and ray-optical solutions” IEEE Trans. Antenn. Propag. AP-19, 378–390 (1971).

[CrossRef]

C. Liang and Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481 (1967).

H. Kimura, L. Kolokolova, and I. Mann, “Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres,” Astron. Astrophys. 449, 1243–1254 (2006).

[CrossRef]

A. Zayats, I. Smolyaninov, and A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).

[CrossRef]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).

[CrossRef]

M. Francoeur, M. Menguc, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett. 93, 043109 (2008).

[CrossRef]

M. Francoeur and M. P. Menguc, “Role of fluctuational electrodynamics in near-field radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transfer 109, 280–293 (2008).

[CrossRef]

E. Merzbacher, Quantum Mechanics (Wiley, 1997).

W. Chew, E. Michielssen, J. Song, and J. Jin, Fast and efficient algorithms in computational electromagnetics , (Artech House, Inc., 2001).

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine, K. Joulain, J. Mulet, Y. Chen, and J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).

[CrossRef]
[PubMed]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).

[CrossRef]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative transfer at nanometric distances,” Microscale Thermo. Eng. 6, 209–222 (2002).

[CrossRef]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).

[CrossRef]
[PubMed]

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the planck blackbody radiation law at nanoscale breakdown of the planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).

[CrossRef]

A. Narayanaswamy and G. Chen, “Thermal near–field radiative transfer between two spheres,” Phys. Rev. B 77, 075125 (2008).

[CrossRef]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding plancks blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).

[CrossRef]

A. Narayanaswamy, S. Shen, and G. Chen, “Near–field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).

[CrossRef]

R. Yang, A. Narayanaswamy, and G. Chen, “Surface-plasmon coupled nonequilibrium thermoelectric refrigerators and power generators,” J. Comput. Theor. Nanos. 2, 75–87 (2005).

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).

[CrossRef]

A. Narayanaswamy and G. Chen, “Direct computation of thermal emission from nanostructures,” Annual Reviews of Heat Transfer (Begell House, 2005), vol. 14, pp. 169–195.

M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).

[CrossRef]

J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys.: Condens. Matter 11, 6621–6633 (1999).

[CrossRef]

U. Durig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).

[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).

[CrossRef]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).

[CrossRef]

M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).

[CrossRef]

U. Durig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).

[CrossRef]

S. Biehs, E. Rousseau, and J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett. 105, 234301 (2010).

[CrossRef]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).

[CrossRef]

A. Kittel, U. Wischnath, J. Welker, O. Huth, F. Ruting, and S. Biehs, “Near-field thermal imaging of nanostructured surfaces,” Appl. Phys. Lett. 93, 193109 (2008).

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy.” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

[CrossRef]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).

[CrossRef]
[PubMed]

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the planck blackbody radiation law at nanoscale breakdown of the planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).

[CrossRef]

A. Narayanaswamy, S. Shen, and G. Chen, “Near–field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).

[CrossRef]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).

[CrossRef]

A. Zayats, I. Smolyaninov, and A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).

[CrossRef]

W. Chew, E. Michielssen, J. Song, and J. Jin, Fast and efficient algorithms in computational electromagnetics , (Artech House, Inc., 2001).

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19, 15–24 (1961).

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy.” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

[CrossRef]

J. Stratton, Electromagnetic Theory (Wiley-IEEE Press, 2007).

M. Francoeur, M. Menguc, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett. 93, 043109 (2008).

[CrossRef]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy.” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

[CrossRef]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).

[CrossRef]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

[CrossRef]

V. Yannopapas and N. Vitanov, “Spontaneous emission of a two-level atom placed within clusters of metallic nanoparticles,” J. Phys.: Condens. Matter 19, 096210 (2007).

[CrossRef]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).

[CrossRef]

M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).

[CrossRef]

A. Kittel, U. Wischnath, J. Welker, O. Huth, F. Ruting, and S. Biehs, “Near-field thermal imaging of nanostructured surfaces,” Appl. Phys. Lett. 93, 193109 (2008).

A. Kittel, U. Wischnath, J. Welker, O. Huth, F. Ruting, and S. Biehs, “Near-field thermal imaging of nanostructured surfaces,” Appl. Phys. Lett. 93, 193109 (2008).

R. Yang, A. Narayanaswamy, and G. Chen, “Surface-plasmon coupled nonequilibrium thermoelectric refrigerators and power generators,” J. Comput. Theor. Nanos. 2, 75–87 (2005).

V. Yannopapas and N. Vitanov, “Spontaneous emission of a two-level atom placed within clusters of metallic nanoparticles,” J. Phys.: Condens. Matter 19, 096210 (2007).

[CrossRef]

A. Zayats, I. Smolyaninov, and A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).

[CrossRef]

S. Basu, Z. Zhang, and C. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).

[CrossRef]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy.” Annu. Rev. Anal. Chem. 1, 601–626 (2008).

[CrossRef]

A. Narayanaswamy, S. Shen, L. Hu, X. Chen, and G. Chen, “Breakdown of the planck blackbody radiation law at nanoscale breakdown of the planck blackbody radiation law at nanoscale gaps,” Appl. Phys. A 96, 357–362 (2009).

[CrossRef]

M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).

[CrossRef]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding plancks blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).

[CrossRef]

M. Francoeur, M. Menguc, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett. 93, 043109 (2008).

[CrossRef]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).

[CrossRef]

A. Kittel, U. Wischnath, J. Welker, O. Huth, F. Ruting, and S. Biehs, “Near-field thermal imaging of nanostructured surfaces,” Appl. Phys. Lett. 93, 193109 (2008).

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).

[CrossRef]

H. Kimura, L. Kolokolova, and I. Mann, “Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres,” Astron. Astrophys. 449, 1243–1254 (2006).

[CrossRef]

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241 (1998).

[CrossRef]

J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres Part I–multipole expansion and ray-optical solutions” IEEE Trans. Antenn. Propag. AP-19, 378–390 (1971).

[CrossRef]

S. Basu, Z. Zhang, and C. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).

[CrossRef]

N. A. Gumerov and R. Duraiswami, “Computation of scattering from n spheres using multipole reexpansion,” J. Acoust. Soc. Am. 112, 2688–2701 (2002).

[CrossRef]

U. Durig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).

[CrossRef]

R. Yang, A. Narayanaswamy, and G. Chen, “Surface-plasmon coupled nonequilibrium thermoelectric refrigerators and power generators,” J. Comput. Theor. Nanos. 2, 75–87 (2005).

W. C. Chew, “Efficient ways to compute the vector addition theorem,” J. Electromagn. Wave 7, 651–665 (1993).

[CrossRef]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. of Appl. Phys. 100, 063704 (2006).

[CrossRef]

J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys.: Condens. Matter 11, 6621–6633 (1999).

[CrossRef]

V. Yannopapas and N. Vitanov, “Spontaneous emission of a two-level atom placed within clusters of metallic nanoparticles,” J. Phys.: Condens. Matter 19, 096210 (2007).

[CrossRef]

M. Francoeur and M. P. Menguc, “Role of fluctuational electrodynamics in near-field radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transfer 109, 280–293 (2008).

[CrossRef]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative transfer at nanometric distances,” Microscale Thermo. Eng. 6, 209–222 (2002).

[CrossRef]

W. Chew, “A derivation of the vector addition theorem,” Microw. Opt. Technol. Let. 3, 256–260 (1990).

[CrossRef]

W. C. Chew, “Derivation of the vector addition theorem,” Microw. Opt. Technol. Let. 3, 256–260 (1990).

[CrossRef]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).

[CrossRef]
[PubMed]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009).

[CrossRef]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine, K. Joulain, J. Mulet, Y. Chen, and J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).

[CrossRef]
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics.” Nature 424, 824–830 (2003).

[CrossRef]
[PubMed]

C. Hargreaves, “Radiative transfer between closely spaced bodies,” Philips Res. Rep. Suppl. 5, 1–80 (1973).

A. Zayats, I. Smolyaninov, and A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).

[CrossRef]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).

[CrossRef]

A. Narayanaswamy, S. Shen, and G. Chen, “Near–field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).

[CrossRef]

P. Ben-Abdallah and K. Joulain, “Fundamental limits for noncontact transfers between two bodies,” Phys. Rev. B 82, 121419 (2010).

[CrossRef]

A. Narayanaswamy and G. Chen, “Thermal near–field radiative transfer between two spheres,” Phys. Rev. B 77, 075125 (2008).

[CrossRef]

S. Biehs, E. Rousseau, and J. Greffet, “Mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett. 105, 234301 (2010).

[CrossRef]

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19, 15–24 (1961).

O. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20, 33–40 (1962).

C. Liang and Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481 (1967).

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).

[CrossRef]

R. Crane, “Cooperative scattering by dielectric spheres,” Tech. Rep. , Lincoln Laboratory, M.I.T, Lexington, MA (1967).

E. Merzbacher, Quantum Mechanics (Wiley, 1997).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic,1969).

G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions” Tech. Rep. SAND78-6018, Translated by P. Newman, Sandia Labs (1978), (an english translation of G. Mie’s 1908 paper.).

J. H. Bruning and Y. Lo, “Multiple scattering by spheres” Tech. Rep. Antenna Laboratory Report No. 69-5, University of Illinois, Urbana, Illinois (1969).

J. D. Jackson, Classical Electrodynamics (John Wiley, 1998).

J. Stratton, Electromagnetic Theory (Wiley-IEEE Press, 2007).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).

[CrossRef]

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).

C. Otey and S. Fan, “Exact microscopic theory of electromagnetic heat transfer between a dielectric sphere and plate,” Arxiv preprint arXiv:1103.2668(2011).

R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G. Mueller, D. Reitze, D. Tanner, and B. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Arxiv preprint arXiv:1103.2389 (2011).

W. Wiscombe, “Mie scattering calculations: advances in technique and fast, vector-speed computer codes,” Tech. rep. , NCAR/TN-140+ STR, National Center for Atmospheric Research, Boulder, Colorado (1996).

W. Chew, E. Michielssen, J. Song, and J. Jin, Fast and efficient algorithms in computational electromagnetics , (Artech House, Inc., 2001).

A. Narayanaswamy and G. Chen, “Direct computation of thermal emission from nanostructures,” Annual Reviews of Heat Transfer (Begell House, 2005), vol. 14, pp. 169–195.