Abstract

The green-emitting phosphor Ca3Si2O4N2:Eu2+ was synthesized using a solid-state reaction. The luminescence properties, diffuse reflection spectrum, and thermal quenching were firstly studied, and a white light-emitting diode (wLED) was fabricated using the Eu2+-activated Ca3Si2O4N2 phosphor. Eu2+-doped Ca3Si2O4N2 exhibited a broad green emission band centered between 510 and 550 nm depending on the concentration of Eu2+. The optimal doping concentration of Eu2+ in Ca3Si2O4N2 was 1 mol%. The energy transfer between Eu2+ ions proceeds by an electric multipolar interaction mechanism, with a critical transfer distance of approximately 30.08 Å. A wLED with an color-rendering index Ra of 88.25 at a correlated color temperature of 6029 K was obtained by combining a GaN-based n-UV LED (380 nm) with the blue-emitting BaMgAl10O17:Eu2+, green-emitting Ca3Si2O4N2:Eu2+, and red-emitting CaAlSiN3:Eu2+ phosphors. The results present Ca3Si2O4N2:Eu2+ as an attractive candidate for use as a conversion phosphor for wLED applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett. 93(9), 091905 (2008).
    [CrossRef]
  2. T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
    [CrossRef]
  3. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
    [CrossRef]
  4. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
    [CrossRef]
  5. H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
    [CrossRef]
  6. Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin. 116(1-2), 107–116 (2006).
    [CrossRef]
  7. R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-Emitting Diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
    [CrossRef]
  8. Y. Q. Li, G. de With, and H. T. Hintzen, “The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8:Eu2+ LED conversion phosphor,” J. Solid State Chem. 181(3), 515–524 (2008).
    [CrossRef]
  9. K. S. Sohn, B. Lee, R. J. Xie, and N. Hirosaki, “A Rate Equation Model for Energy Transfer between Activators at Different Crystallographic Sites in Sr2Si5N8:Eu2+,” Opt. Lett. 34(21), 3427–3429 (2009).
    [CrossRef] [PubMed]
  10. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
    [CrossRef]
  11. H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1−xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31 (2008).
    [CrossRef]
  12. X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
    [CrossRef]
  13. S. Lee and K. S. Sohn, “The effect of Inhomogeneous Broadening on Time-Resolved Photoluminescence in CaAlSiN3:Eu2+,” Opt. Lett. 35(7), 1004–1006 (2010).
    [CrossRef] [PubMed]
  14. Y. W. Jung, B. Lee, S. P. Singh, and K. S. Sohn, “Particle-swarm-optimization-assisted rate equation modeling of the two-peak emission behavior of non-stoichiometric CaAl(x)Si((7-3x)/4)N3:Eu2+ phosphors,” Opt. Express 18(17), 17805–17818 (2010).
    [CrossRef] [PubMed]
  15. Y. Q. Li, C. M. Fang, G. de With, and H. T. Hintzen, “Preparation,structure and photoluminescence properties of Eu2+ and Ce3+-doped SrYSi4N7,” J. Solid State Chem. 171 (12), 4687–4694 (2004).
    [CrossRef]
  16. Y. Q. Li, G. de With, and H. T. Hintzen, “Synthesis, structure, and luminescence properties of Eu2+ and Ce3+ activated BaYSi4N7,” J. Alloy. Comp. 385(1-2), 1–11 (2004).
    [CrossRef]
  17. C. Kulshreshtha, J. H. Kwak, Y. J. Park, and K. S. Sohn, “Photoluminescent and decay behaviors of Mn2+ and Ce3+ co-activated MgSiN2 phosphors for use in LED applications,” Opt. Lett. 34(6), 794–796 (2009).
    [CrossRef] [PubMed]
  18. R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett. 91, 061119 (2007).
    [CrossRef]
  19. Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence Properties of Eu2+-Activated Alkaline-Earth Silicon-Oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors,” Chem. Mater. 17(12), 3242–3248 (2005).
    [CrossRef]
  20. T. Suehiro, N. Hirosaki, R. J. Xie, and M. Mitomo, “Powder Synthesis of Ca-α‘-SiAlON as a Host Material for Phosphors,” Chem. Mater. 17(2), 308–314 (2005).
    [CrossRef]
  21. K. Sakuma, N. Hirosaki, R. J. Xie, Y. Yamamoto, and T. Suehiro, “Luminescence properties of (Ca,Y)-α-SiAlON:Eu phosphors,” Mater. Lett. 61(2), 547–550 (2007).
    [CrossRef]
  22. R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, and N. Hirosaki, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86(21), 211905 (2005).
    [CrossRef]
  23. Z. K. Huang, W. Y. Sun, and D. S. Yan, “Phase relations of the Si3N4-AIN-CaO system,” J. Mater. Sci. Lett. 4(3), 255–259 (1985).
    [CrossRef]
  24. A. Sharafat, “Preparation, characterization and properties of nitrogen rich glasses in alkaline earth-Si-O-N systems,” Ph. D. Thesis, Stockholm University, (2009).
  25. W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A Study on the Luminescence Properties of CaAlBO4:RE3+ (RE = Ce, Tb, and Eu) Phosphors,” J. Electrochem. Soc. 155(9), J252–J255 (2008).
    [CrossRef]
  26. P. Mondal and J. W. Jeffery, “The crystal structure of tricalcium aluminate, Ca3Al2O6,” Acta Crystallogr. B 31(3), 689–697 (1975).
    [CrossRef]
  27. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [CrossRef]
  28. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).
  29. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [CrossRef]
  30. L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
    [CrossRef]

2010 (3)

2009 (2)

2008 (4)

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1−xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31 (2008).
[CrossRef]

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett. 93(9), 091905 (2008).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8:Eu2+ LED conversion phosphor,” J. Solid State Chem. 181(3), 515–524 (2008).
[CrossRef]

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A Study on the Luminescence Properties of CaAlBO4:RE3+ (RE = Ce, Tb, and Eu) Phosphors,” J. Electrochem. Soc. 155(9), J252–J255 (2008).
[CrossRef]

2007 (3)

K. Sakuma, N. Hirosaki, R. J. Xie, Y. Yamamoto, and T. Suehiro, “Luminescence properties of (Ca,Y)-α-SiAlON:Eu phosphors,” Mater. Lett. 61(2), 547–550 (2007).
[CrossRef]

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett. 91, 061119 (2007).
[CrossRef]

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

2006 (3)

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin. 116(1-2), 107–116 (2006).
[CrossRef]

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-Emitting Diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[CrossRef]

2005 (3)

R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, and N. Hirosaki, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86(21), 211905 (2005).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence Properties of Eu2+-Activated Alkaline-Earth Silicon-Oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors,” Chem. Mater. 17(12), 3242–3248 (2005).
[CrossRef]

T. Suehiro, N. Hirosaki, R. J. Xie, and M. Mitomo, “Powder Synthesis of Ca-α‘-SiAlON as a Host Material for Phosphors,” Chem. Mater. 17(2), 308–314 (2005).
[CrossRef]

2004 (2)

Y. Q. Li, C. M. Fang, G. de With, and H. T. Hintzen, “Preparation,structure and photoluminescence properties of Eu2+ and Ce3+-doped SrYSi4N7,” J. Solid State Chem. 171 (12), 4687–4694 (2004).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “Synthesis, structure, and luminescence properties of Eu2+ and Ce3+ activated BaYSi4N7,” J. Alloy. Comp. 385(1-2), 1–11 (2004).
[CrossRef]

2003 (1)

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[CrossRef]

2000 (1)

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[CrossRef]

1994 (1)

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

1985 (1)

Z. K. Huang, W. Y. Sun, and D. S. Yan, “Phase relations of the Si3N4-AIN-CaO system,” J. Mater. Sci. Lett. 4(3), 255–259 (1985).
[CrossRef]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

1975 (1)

P. Mondal and J. W. Jeffery, “The crystal structure of tricalcium aluminate, Ca3Al2O6,” Acta Crystallogr. B 31(3), 689–697 (1975).
[CrossRef]

1969 (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

1967 (1)

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
[CrossRef]

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

Bagkar, N. C.

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett. 91, 061119 (2007).
[CrossRef]

Ban, T.

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[CrossRef]

Blasse, G.

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

Chen, T. M.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A Study on the Luminescence Properties of CaAlBO4:RE3+ (RE = Ce, Tb, and Eu) Phosphors,” J. Electrochem. Soc. 155(9), J252–J255 (2008).
[CrossRef]

Chiu, Y. C.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A Study on the Luminescence Properties of CaAlBO4:RE3+ (RE = Ce, Tb, and Eu) Phosphors,” J. Electrochem. Soc. 155(9), J252–J255 (2008).
[CrossRef]

de With, G.

Y. Q. Li, G. de With, and H. T. Hintzen, “The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8:Eu2+ LED conversion phosphor,” J. Solid State Chem. 181(3), 515–524 (2008).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin. 116(1-2), 107–116 (2006).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence Properties of Eu2+-Activated Alkaline-Earth Silicon-Oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors,” Chem. Mater. 17(12), 3242–3248 (2005).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “Synthesis, structure, and luminescence properties of Eu2+ and Ce3+ activated BaYSi4N7,” J. Alloy. Comp. 385(1-2), 1–11 (2004).
[CrossRef]

Y. Q. Li, C. M. Fang, G. de With, and H. T. Hintzen, “Preparation,structure and photoluminescence properties of Eu2+ and Ce3+-doped SrYSi4N7,” J. Solid State Chem. 171 (12), 4687–4694 (2004).
[CrossRef]

Delsing, A. C. A.

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence Properties of Eu2+-Activated Alkaline-Earth Silicon-Oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors,” Chem. Mater. 17(12), 3242–3248 (2005).
[CrossRef]

DenBaars, S. P.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett. 93(9), 091905 (2008).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

Fang, C. M.

Y. Q. Li, C. M. Fang, G. de With, and H. T. Hintzen, “Preparation,structure and photoluminescence properties of Eu2+ and Ce3+-doped SrYSi4N7,” J. Solid State Chem. 171 (12), 4687–4694 (2004).
[CrossRef]

Fellows, N. N.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett. 93(9), 091905 (2008).
[CrossRef]

Hanzawa, H.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Hintzen, H. T.

Y. Q. Li, G. de With, and H. T. Hintzen, “The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8:Eu2+ LED conversion phosphor,” J. Solid State Chem. 181(3), 515–524 (2008).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin. 116(1-2), 107–116 (2006).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence Properties of Eu2+-Activated Alkaline-Earth Silicon-Oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors,” Chem. Mater. 17(12), 3242–3248 (2005).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “Synthesis, structure, and luminescence properties of Eu2+ and Ce3+ activated BaYSi4N7,” J. Alloy. Comp. 385(1-2), 1–11 (2004).
[CrossRef]

Y. Q. Li, C. M. Fang, G. de With, and H. T. Hintzen, “Preparation,structure and photoluminescence properties of Eu2+ and Ce3+-doped SrYSi4N7,” J. Solid State Chem. 171 (12), 4687–4694 (2004).
[CrossRef]

Hirata, G. A.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett. 93(9), 091905 (2008).
[CrossRef]

Hirosaki, N.

K. S. Sohn, B. Lee, R. J. Xie, and N. Hirosaki, “A Rate Equation Model for Energy Transfer between Activators at Different Crystallographic Sites in Sr2Si5N8:Eu2+,” Opt. Lett. 34(21), 3427–3429 (2009).
[CrossRef] [PubMed]

K. Sakuma, N. Hirosaki, R. J. Xie, Y. Yamamoto, and T. Suehiro, “Luminescence properties of (Ca,Y)-α-SiAlON:Eu phosphors,” Mater. Lett. 61(2), 547–550 (2007).
[CrossRef]

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-Emitting Diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[CrossRef]

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[CrossRef]

T. Suehiro, N. Hirosaki, R. J. Xie, and M. Mitomo, “Powder Synthesis of Ca-α‘-SiAlON as a Host Material for Phosphors,” Chem. Mater. 17(2), 308–314 (2005).
[CrossRef]

R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, and N. Hirosaki, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86(21), 211905 (2005).
[CrossRef]

Höppe, H. A.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[CrossRef]

Horikawa, T.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Hua, S. F.

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett. 91, 061119 (2007).
[CrossRef]

Huang, Z. K.

Z. K. Huang, W. Y. Sun, and D. S. Yan, “Phase relations of the Si3N4-AIN-CaO system,” J. Mater. Sci. Lett. 4(3), 255–259 (1985).
[CrossRef]

Im, W. B.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett. 93(9), 091905 (2008).
[CrossRef]

Itou, M.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1−xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31 (2008).
[CrossRef]

Jang, S. M.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A Study on the Luminescence Properties of CaAlBO4:RE3+ (RE = Ce, Tb, and Eu) Phosphors,” J. Electrochem. Soc. 155(9), J252–J255 (2008).
[CrossRef]

Jeffery, J. W.

P. Mondal and J. W. Jeffery, “The crystal structure of tricalcium aluminate, Ca3Al2O6,” Acta Crystallogr. B 31(3), 689–697 (1975).
[CrossRef]

Jung, Y. W.

Kijima, N.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1−xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31 (2008).
[CrossRef]

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Kim, Y. I.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett. 93(9), 091905 (2008).
[CrossRef]

Kimoto, K.

R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, and N. Hirosaki, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86(21), 211905 (2005).
[CrossRef]

Kobayashi, N.

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[CrossRef]

Kulshreshtha, C.

Kwak, J. H.

Lee, B.

Lee, S.

Li, Y. Q.

Y. Q. Li, G. de With, and H. T. Hintzen, “The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8:Eu2+ LED conversion phosphor,” J. Solid State Chem. 181(3), 515–524 (2008).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin. 116(1-2), 107–116 (2006).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence Properties of Eu2+-Activated Alkaline-Earth Silicon-Oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors,” Chem. Mater. 17(12), 3242–3248 (2005).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “Synthesis, structure, and luminescence properties of Eu2+ and Ce3+ activated BaYSi4N7,” J. Alloy. Comp. 385(1-2), 1–11 (2004).
[CrossRef]

Y. Q. Li, C. M. Fang, G. de With, and H. T. Hintzen, “Preparation,structure and photoluminescence properties of Eu2+ and Ce3+-doped SrYSi4N7,” J. Solid State Chem. 171 (12), 4687–4694 (2004).
[CrossRef]

Liu, R. S.

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett. 91, 061119 (2007).
[CrossRef]

Liu, W. R.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A Study on the Luminescence Properties of CaAlBO4:RE3+ (RE = Ce, Tb, and Eu) Phosphors,” J. Electrochem. Soc. 155(9), J252–J255 (2008).
[CrossRef]

Liu, Y. H.

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett. 91, 061119 (2007).
[CrossRef]

Lutz, H.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[CrossRef]

Ma, Y. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[CrossRef]

Machida, K.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Masui, H.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett. 93(9), 091905 (2008).
[CrossRef]

Mitomo, M.

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-Emitting Diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[CrossRef]

T. Suehiro, N. Hirosaki, R. J. Xie, and M. Mitomo, “Powder Synthesis of Ca-α‘-SiAlON as a Host Material for Phosphors,” Chem. Mater. 17(2), 308–314 (2005).
[CrossRef]

R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, and N. Hirosaki, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86(21), 211905 (2005).
[CrossRef]

Mondal, P.

P. Mondal and J. W. Jeffery, “The crystal structure of tricalcium aluminate, Ca3Al2O6,” Acta Crystallogr. B 31(3), 689–697 (1975).
[CrossRef]

Morys, P.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[CrossRef]

Mukai, T.

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Naito, A.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[CrossRef]

Nakajima, T.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[CrossRef]

Nakamura, S.

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Nishida, T.

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[CrossRef]

Pan, Y. X.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[CrossRef]

Park, Y. J.

Piao, X.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Sakuma, K.

K. Sakuma, N. Hirosaki, R. J. Xie, Y. Yamamoto, and T. Suehiro, “Luminescence properties of (Ca,Y)-α-SiAlON:Eu phosphors,” Mater. Lett. 61(2), 547–550 (2007).
[CrossRef]

Schnick, W.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[CrossRef]

Seilmeier, A.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[CrossRef]

Seki, K.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1−xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31 (2008).
[CrossRef]

Sekiguchi, T.

R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, and N. Hirosaki, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86(21), 211905 (2005).
[CrossRef]

Senoh, M.

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Seshadri, R.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett. 93(9), 091905 (2008).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

Shimomura, Y.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Singh, S. P.

Sohn, K. S.

Suehiro, T.

K. Sakuma, N. Hirosaki, R. J. Xie, Y. Yamamoto, and T. Suehiro, “Luminescence properties of (Ca,Y)-α-SiAlON:Eu phosphors,” Mater. Lett. 61(2), 547–550 (2007).
[CrossRef]

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-Emitting Diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[CrossRef]

T. Suehiro, N. Hirosaki, R. J. Xie, and M. Mitomo, “Powder Synthesis of Ca-α‘-SiAlON as a Host Material for Phosphors,” Chem. Mater. 17(2), 308–314 (2005).
[CrossRef]

R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, and N. Hirosaki, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86(21), 211905 (2005).
[CrossRef]

Sun, W. Y.

Z. K. Huang, W. Y. Sun, and D. S. Yan, “Phase relations of the Si3N4-AIN-CaO system,” J. Mater. Sci. Lett. 4(3), 255–259 (1985).
[CrossRef]

Tung, C. Y.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A Study on the Luminescence Properties of CaAlBO4:RE3+ (RE = Ce, Tb, and Eu) Phosphors,” J. Electrochem. Soc. 155(9), J252–J255 (2008).
[CrossRef]

Uheda, K.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[CrossRef]

Van Uitert, L. G.

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
[CrossRef]

Wada, H.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1−xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31 (2008).
[CrossRef]

Watanabe, H.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1−xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31 (2008).
[CrossRef]

Xiao, F.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[CrossRef]

Xie, R. J.

K. S. Sohn, B. Lee, R. J. Xie, and N. Hirosaki, “A Rate Equation Model for Energy Transfer between Activators at Different Crystallographic Sites in Sr2Si5N8:Eu2+,” Opt. Lett. 34(21), 3427–3429 (2009).
[CrossRef] [PubMed]

K. Sakuma, N. Hirosaki, R. J. Xie, Y. Yamamoto, and T. Suehiro, “Luminescence properties of (Ca,Y)-α-SiAlON:Eu phosphors,” Mater. Lett. 61(2), 547–550 (2007).
[CrossRef]

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-Emitting Diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[CrossRef]

R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, and N. Hirosaki, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86(21), 211905 (2005).
[CrossRef]

T. Suehiro, N. Hirosaki, R. J. Xie, and M. Mitomo, “Powder Synthesis of Ca-α‘-SiAlON as a Host Material for Phosphors,” Chem. Mater. 17(2), 308–314 (2005).
[CrossRef]

Xu, F. F.

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-Emitting Diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[CrossRef]

Yamamoto, H.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[CrossRef]

Yamamoto, Y.

K. Sakuma, N. Hirosaki, R. J. Xie, Y. Yamamoto, and T. Suehiro, “Luminescence properties of (Ca,Y)-α-SiAlON:Eu phosphors,” Mater. Lett. 61(2), 547–550 (2007).
[CrossRef]

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[CrossRef]

R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, and N. Hirosaki, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86(21), 211905 (2005).
[CrossRef]

Yan, D. S.

Z. K. Huang, W. Y. Sun, and D. S. Yan, “Phase relations of the Si3N4-AIN-CaO system,” J. Mater. Sci. Lett. 4(3), 255–259 (1985).
[CrossRef]

Ye, S.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[CrossRef]

Yeh, Y. T.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A Study on the Luminescence Properties of CaAlBO4:RE3+ (RE = Ce, Tb, and Eu) Phosphors,” J. Electrochem. Soc. 155(9), J252–J255 (2008).
[CrossRef]

Zhang, Q. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[CrossRef]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

Acta Crystallogr. B (1)

P. Mondal and J. W. Jeffery, “The crystal structure of tricalcium aluminate, Ca3Al2O6,” Acta Crystallogr. B 31(3), 689–697 (1975).
[CrossRef]

Appl. Phys. Lett. (5)

R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, and N. Hirosaki, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86(21), 211905 (2005).
[CrossRef]

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett. 91, 061119 (2007).
[CrossRef]

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett. 93(9), 091905 (2008).
[CrossRef]

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[CrossRef]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Chem. Mater. (4)

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-Emitting Diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[CrossRef]

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence Properties of Eu2+-Activated Alkaline-Earth Silicon-Oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors,” Chem. Mater. 17(12), 3242–3248 (2005).
[CrossRef]

T. Suehiro, N. Hirosaki, R. J. Xie, and M. Mitomo, “Powder Synthesis of Ca-α‘-SiAlON as a Host Material for Phosphors,” Chem. Mater. 17(2), 308–314 (2005).
[CrossRef]

Electrochem. Solid-State Lett. (1)

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22–H25 (2006).
[CrossRef]

J. Alloy. Comp. (1)

Y. Q. Li, G. de With, and H. T. Hintzen, “Synthesis, structure, and luminescence properties of Eu2+ and Ce3+ activated BaYSi4N7,” J. Alloy. Comp. 385(1-2), 1–11 (2004).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

J. Electrochem. Soc. (3)

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
[CrossRef]

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A Study on the Luminescence Properties of CaAlBO4:RE3+ (RE = Ce, Tb, and Eu) Phosphors,” J. Electrochem. Soc. 155(9), J252–J255 (2008).
[CrossRef]

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1−xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31 (2008).
[CrossRef]

J. Lumin. (1)

Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin. 116(1-2), 107–116 (2006).
[CrossRef]

J. Mater. Sci. Lett. (1)

Z. K. Huang, W. Y. Sun, and D. S. Yan, “Phase relations of the Si3N4-AIN-CaO system,” J. Mater. Sci. Lett. 4(3), 255–259 (1985).
[CrossRef]

J. Phys. Chem. Solids (1)

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids 61(12), 2001–2006 (2000).
[CrossRef]

J. Solid State Chem. (2)

Y. Q. Li, G. de With, and H. T. Hintzen, “The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8:Eu2+ LED conversion phosphor,” J. Solid State Chem. 181(3), 515–524 (2008).
[CrossRef]

Y. Q. Li, C. M. Fang, G. de With, and H. T. Hintzen, “Preparation,structure and photoluminescence properties of Eu2+ and Ce3+-doped SrYSi4N7,” J. Solid State Chem. 171 (12), 4687–4694 (2004).
[CrossRef]

Mater. Lett. (1)

K. Sakuma, N. Hirosaki, R. J. Xie, Y. Yamamoto, and T. Suehiro, “Luminescence properties of (Ca,Y)-α-SiAlON:Eu phosphors,” Mater. Lett. 61(2), 547–550 (2007).
[CrossRef]

Mater. Sci. Eng. Rep. (1)

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Philips Res. Rep. (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

Other (1)

A. Sharafat, “Preparation, characterization and properties of nitrogen rich glasses in alkaline earth-Si-O-N systems,” Ph. D. Thesis, Stockholm University, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

XRD patterns of Ca3Si2O4N2 (JCPDS 38-0944) and Ca3Si2O4N2:9%Eu2+ samples.

Fig. 2
Fig. 2

Crystal structure of Ca3Si2O4N2.

Fig. 3
Fig. 3

Excitation and emission spectra of Ca3Si2O4N2:Eu2+ with varying Eu2+ concentrations.

Fig. 4
Fig. 4

Emission intensity of Ca3Si2O4N2 as a function of Eu2+ concentration. Inset: log(I/xEu2+) dependence of log(xEu2+).

Fig. 5
Fig. 5

CIE chromaticity diagram for Ca3Si2O4N2:Eu2+ phosphors with different Eu2+ dopant contents. The upper inset shows these phosphors under 365nm excitation in a UV box.

Fig. 6
Fig. 6

Diffuse reflectance spectra of undoped (dashed line) and 1% Eu-doped (solid line) Ca3Si2O4N2.

Fig. 7
Fig. 7

Temperature-dependent emission spectra of Ca3Si2O4N2:Eu2+ phosphor. Inset: normalized PL intensity as a function of temperature. For comparison, thermal quenching data of Ba2SiO4:Eu2+ excited at 380 nm was also measured as a reference.

Fig. 8
Fig. 8

EL spectra of the white LED composed of GaN-based n-UV-LED (380 nm) and BaMgAl10O17:Eu2+ (blue), Ca3Si2O4N2:Eu2+ (green) and CaAlSiN3:Eu2+ (red) phosphors driven by a 350-mA current.

Tables (1)

Tables Icon

Table 1 Emission, Stokes Shift, Crystal Filed Splitting, Normalized PL Intensity and the CIE Coordinates for (Ca1-xEux)3Si2O4N2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R c = 2 [ 3 V 4 π x c Z ] 1 / 3 ,
I x = k 1 + β ( x ) θ / 3 ,
ln ( I o I ) = ln A E a k T ,

Metrics