Abstract

A technique to determine the aerosol extinction-to-backscatter ratio (lidar ratio) as well as extinction and backscatter coefficients from simultaneous ground-based and space-borne lidar measurements is proposed. This technique can be applied in presence of more than one aerosol layer. To test the reliability of this technique, a numerical simulation has been performed. Moreover, the technique has been applied to an actual case by analyzing data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Napoli-Earlinet lidar measurements. The results show that the values of lidar ratio and backscatter coefficient retrieved by this technique are in good agreement with the ones obtained from Raman measurements.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. CCSP, 2009: Atmospheric Aerosol Properties and Impacts on Climate: A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, M. Chin, R. A. Kahn, and S. E. Schwartz, eds. (National Aeronautics and Space Administration, Washington, D.C.).
  2. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211–220 (1981).
    [CrossRef] [PubMed]
  3. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
    [CrossRef] [PubMed]
  4. J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15(4), 1043–1050 (1998).
    [CrossRef]
  5. T. Takamura, Y. Sasano, and T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33(30), 7132–7140 (1994).
    [CrossRef] [PubMed]
  6. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
    [CrossRef] [PubMed]
  7. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
    [CrossRef] [PubMed]
  8. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15(13), 746–748 (1990).
    [CrossRef] [PubMed]
  9. G. J. Kunz, “Bipath method as a way to measure the spatial backscatter and extinction coefficients with lidar,” Appl. Opt. 26(5), 794–795 (1987).
    [CrossRef] [PubMed]
  10. H. G. Hughes and M. R. Paulson, “Double-ended lidar technique for aerosol studies,” Appl. Opt. 27(11), 2273–2278 (1988).
    [CrossRef] [PubMed]
  11. X. Wang, M. G. Frontoso, G. Pisani, and N. Spinelli, “Retrieval of atmospheric particles optical properties by combining ground-based and spaceborne lidar elastic scattering profiles,” Opt. Express 15(11), 6734–6743 (2007).
    [CrossRef] [PubMed]
  12. Z. Tao, Z. Liu, D. Wu, M. P. McCormick, and J. Su, “Determination of aerosol extinction-to-backscatter ratios from simultaneous ground-based and spaceborne lidar measurements,” Opt. Lett. 33(24), 2986–2988 (2008).
    [CrossRef] [PubMed]
  13. J. Bösenberg, V. Mattias, A. Amodeo, V. Amoiridis, A. Ansmann, J. Baldasano, I. Balin, D. Balis, C. Böckmann, and A. Boselli, “A European aerosol research lidar network to establish an aerosol climatology,” Max Planck Institut für Meteorologie Technical Report no. 348, pp 135–137 (2003).
  14. D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26(11), 2310–2323 (2009).
    [CrossRef]
  15. C. M. R. Platt, “Lidar and radioinetric observations of cirrus clouds,” J. Atmos. Sci. 30(6), 1191–1204 (1973).
    [CrossRef]
  16. S. A. Young and M. A. Vaughan, “The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: algorithm description,” J. Atmos. Ocean. Technol. 26(6), 1105–1119 (2009).
    [CrossRef]
  17. P. Di Girolamo, P. F. Ambrico, A. Amodeo, A. Boselli, G. Pappalardo, and N. Spinelli, “Aerosol observations by lidar in the nocturnal boundary layer,” Appl. Opt. 38(21), 4585–4595 (1999).
    [CrossRef]
  18. X. Lu, Y. Jiang, X. Zhang, X. Wang, and N. Spinelli, “Two-wavelength lidar inversion algorithm for determination of aerosol extinction-to-backscatter ratio and its application to CALIPSO lidar measurements,” J. Quantitative Spectrosc. Radiative Transfer . 112(2), 320-328 (2011).
  19. A. Boselli, M. Armenante, L. D'Avino, G. Pisani, N. Spinelli, and X. Wang, “Characterization of atmospheric aerosol in the urban area of Napoli in the framework of EARLINET Project,” in Remote Sensing of Clouds and the Atmosphere VIII (SPIE, 2004), pp. 643–650.

2009 (2)

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26(11), 2310–2323 (2009).
[CrossRef]

S. A. Young and M. A. Vaughan, “The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: algorithm description,” J. Atmos. Ocean. Technol. 26(6), 1105–1119 (2009).
[CrossRef]

2008 (3)

2007 (1)

1999 (1)

1998 (1)

J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15(4), 1043–1050 (1998).
[CrossRef]

1994 (1)

1990 (1)

1988 (1)

1987 (1)

1984 (1)

1981 (1)

1973 (1)

C. M. R. Platt, “Lidar and radioinetric observations of cirrus clouds,” J. Atmos. Sci. 30(6), 1191–1204 (1973).
[CrossRef]

Ackermann, J.

J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15(4), 1043–1050 (1998).
[CrossRef]

Ambrico, P. F.

Amodeo, A.

Ansmann, A.

Boselli, A.

Cook, A. L.

Di Girolamo, P.

Ehret, G.

Esselborn, M.

Fernald, F. G.

Ferrare, R. A.

Fix, A.

Frontoso, M. G.

Hair, J. W.

Harper, D. B.

Hayasaka, T.

Hostetler, C. A.

Hovis, F. E.

Hu, Y.

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26(11), 2310–2323 (2009).
[CrossRef]

Hughes, H. G.

Hunt, W. H.

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26(11), 2310–2323 (2009).
[CrossRef]

Izquierdo, L. R.

Jiang, Y.

X. Lu, Y. Jiang, X. Zhang, X. Wang, and N. Spinelli, “Two-wavelength lidar inversion algorithm for determination of aerosol extinction-to-backscatter ratio and its application to CALIPSO lidar measurements,” J. Quantitative Spectrosc. Radiative Transfer . 112(2), 320-328 (2011).

Klett, J. D.

Kunz, G. J.

Liu, Z.

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26(11), 2310–2323 (2009).
[CrossRef]

Z. Tao, Z. Liu, D. Wu, M. P. McCormick, and J. Su, “Determination of aerosol extinction-to-backscatter ratios from simultaneous ground-based and spaceborne lidar measurements,” Opt. Lett. 33(24), 2986–2988 (2008).
[CrossRef] [PubMed]

Lu, X.

X. Lu, Y. Jiang, X. Zhang, X. Wang, and N. Spinelli, “Two-wavelength lidar inversion algorithm for determination of aerosol extinction-to-backscatter ratio and its application to CALIPSO lidar measurements,” J. Quantitative Spectrosc. Radiative Transfer . 112(2), 320-328 (2011).

Mack, T. L.

McCormick, M. P.

Omar, A.

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26(11), 2310–2323 (2009).
[CrossRef]

Pappalardo, G.

Paulson, M. R.

Pisani, G.

Platt, C. M. R.

C. M. R. Platt, “Lidar and radioinetric observations of cirrus clouds,” J. Atmos. Sci. 30(6), 1191–1204 (1973).
[CrossRef]

Powell, K. A.

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26(11), 2310–2323 (2009).
[CrossRef]

Riebesell, M.

Sasano, Y.

Spinelli, N.

Su, J.

Takamura, T.

Tao, Z.

Tesche, M.

Vaughan, M. A.

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26(11), 2310–2323 (2009).
[CrossRef]

S. A. Young and M. A. Vaughan, “The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: algorithm description,” J. Atmos. Ocean. Technol. 26(6), 1105–1119 (2009).
[CrossRef]

Wang, X.

X. Wang, M. G. Frontoso, G. Pisani, and N. Spinelli, “Retrieval of atmospheric particles optical properties by combining ground-based and spaceborne lidar elastic scattering profiles,” Opt. Express 15(11), 6734–6743 (2007).
[CrossRef] [PubMed]

X. Lu, Y. Jiang, X. Zhang, X. Wang, and N. Spinelli, “Two-wavelength lidar inversion algorithm for determination of aerosol extinction-to-backscatter ratio and its application to CALIPSO lidar measurements,” J. Quantitative Spectrosc. Radiative Transfer . 112(2), 320-328 (2011).

Weitkamp, C.

Welch, W.

Winker, D. M.

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26(11), 2310–2323 (2009).
[CrossRef]

Wirth, M.

Wu, D.

Young, S. A.

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26(11), 2310–2323 (2009).
[CrossRef]

S. A. Young and M. A. Vaughan, “The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: algorithm description,” J. Atmos. Ocean. Technol. 26(6), 1105–1119 (2009).
[CrossRef]

Zhang, X.

X. Lu, Y. Jiang, X. Zhang, X. Wang, and N. Spinelli, “Two-wavelength lidar inversion algorithm for determination of aerosol extinction-to-backscatter ratio and its application to CALIPSO lidar measurements,” J. Quantitative Spectrosc. Radiative Transfer . 112(2), 320-328 (2011).

Appl. Opt. (8)

T. Takamura, Y. Sasano, and T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33(30), 7132–7140 (1994).
[CrossRef] [PubMed]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
[CrossRef] [PubMed]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
[CrossRef] [PubMed]

G. J. Kunz, “Bipath method as a way to measure the spatial backscatter and extinction coefficients with lidar,” Appl. Opt. 26(5), 794–795 (1987).
[CrossRef] [PubMed]

H. G. Hughes and M. R. Paulson, “Double-ended lidar technique for aerosol studies,” Appl. Opt. 27(11), 2273–2278 (1988).
[CrossRef] [PubMed]

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211–220 (1981).
[CrossRef] [PubMed]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
[CrossRef] [PubMed]

P. Di Girolamo, P. F. Ambrico, A. Amodeo, A. Boselli, G. Pappalardo, and N. Spinelli, “Aerosol observations by lidar in the nocturnal boundary layer,” Appl. Opt. 38(21), 4585–4595 (1999).
[CrossRef]

J. Atmos. Ocean. Technol. (3)

S. A. Young and M. A. Vaughan, “The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: algorithm description,” J. Atmos. Ocean. Technol. 26(6), 1105–1119 (2009).
[CrossRef]

J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15(4), 1043–1050 (1998).
[CrossRef]

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26(11), 2310–2323 (2009).
[CrossRef]

J. Atmos. Sci. (1)

C. M. R. Platt, “Lidar and radioinetric observations of cirrus clouds,” J. Atmos. Sci. 30(6), 1191–1204 (1973).
[CrossRef]

J. Quantitative Spectrosc. Radiative Transfer (1)

X. Lu, Y. Jiang, X. Zhang, X. Wang, and N. Spinelli, “Two-wavelength lidar inversion algorithm for determination of aerosol extinction-to-backscatter ratio and its application to CALIPSO lidar measurements,” J. Quantitative Spectrosc. Radiative Transfer . 112(2), 320-328 (2011).

Opt. Express (1)

Opt. Lett. (2)

Other (3)

J. Bösenberg, V. Mattias, A. Amodeo, V. Amoiridis, A. Ansmann, J. Baldasano, I. Balin, D. Balis, C. Böckmann, and A. Boselli, “A European aerosol research lidar network to establish an aerosol climatology,” Max Planck Institut für Meteorologie Technical Report no. 348, pp 135–137 (2003).

A. Boselli, M. Armenante, L. D'Avino, G. Pisani, N. Spinelli, and X. Wang, “Characterization of atmospheric aerosol in the urban area of Napoli in the framework of EARLINET Project,” in Remote Sensing of Clouds and the Atmosphere VIII (SPIE, 2004), pp. 643–650.

CCSP, 2009: Atmospheric Aerosol Properties and Impacts on Climate: A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, M. Chin, R. A. Kahn, and S. E. Schwartz, eds. (National Aeronautics and Space Administration, Washington, D.C.).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The simulated RCSg and ABSS (a). The aerosol backscatter coefficients βp,g, βp,s retrieved by the described technique and the supposed one represented by ‘Supposed’ (b). The dashed lines define the aerosol boundary layers. The error bars report the standard deviations of the signals.

Fig. 2
Fig. 2

The color coded curtains of performance function F(Sk) for lidar ratios of two layers S1 (0-1.5km) and S2 (1.5-6km) in full scale (a) and in small scale (b).

Fig. 3
Fig. 3

The signal RCSg measured by Napoli lidar at 01:11 GMT on July 22, 2007 and ABSS measured by CALIPSO lidar at 532nm. The dashed lines define the aerosol boundary layers. The error bars report the standard deviations of the signals.

Fig. 4
Fig. 4

The color coded curtains of performance function F(Sk) for lidar ratios of two layers SPBL (0-1km) and SD (1-5km) (a). The aerosol backscatter coefficients βp,g, βp,s retrieved by the described technique and by the Raman method (b). The dashed lines show the two layers boundaries. The error bars report the standard deviation of the Raman results.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R C S g ( z ) = C g ( β p , g ( z ) + β m ( z ) ) exp ( 2 0 z ( α p , g ( z ' ) + α m ( z ' ) ) d z ' )
A B S s ( z ) = ( β p , s ( z ) + β m ( z ) ) exp ( 2 z z s ( α p , s ( z ' ) + α m ( z ' ) ) d z ' )
β i p , g ( z ) = R C S g ( z ) C g exp { 2 0 z [ α m ( z ' ) + α i 1 p , g ( z ' ) ] d z ' } β m ( z )
β i p , s ( z ) = A B S s ( z ) exp { 2 z z s [ α m ( z ' ) + α i 1 p , s ( z ' ) ] d z ' } β m ( z )
α p , j i ( z ) = S ( z ) β i p , j ( z )
F ( S k ) = z = z b z = z t [ β p , g ( z ) β p , s ( z ) ] 2
σ S 2 = σ F 2 ( F S ) 2

Metrics