Abstract

We report a novel micro-fiber Bragg grating (µFBG) sensor that takes advantage of the degeneracy of stop-band and rapid emergence of spectral modes when an effective phase shift occurs. The phase shift can be enabled by a range of perturbations in a central segment of the grating, including monolayer immobilization of bio-molecules or change in refractive index in the surrounding, thereby constituting the possibility of a highly sensitive sensor with the merit of scalable performance. The use of µFBG ensures strong evanescent field coupling to the surrounding in order to maximize signal transduction. Simulation results indicate very favorable sensor signal characteristics such as large wavelength shift and sharp reflection dips. A general relation between the peak position within the stop-band and the amount of effective phase shift is also provided, and may generally serve as helpful guideline for FBG sensor design. A typical µFBG sensor device may detect surface protein/DNA adsorption with limit-of-detection (LOD) as low as 3.3 pg.mm −2 for surface mass density and 51.8 fg for total mass. For refractive index (RI) sensing, the LOD is 2.5*10−6 refractive index unit (RIU).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  3. D. Xiaowei and Z. Ruifeng, “Detection of liquid-level variation using a side-polished fiber Bragg grating,” Opt. Laser Technol. 42(1), 214–218 (2010).
    [CrossRef]
  4. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
    [CrossRef]
  5. D. Xiaowei and Z. Ruifeng, “Highly sensitive distributed liquid-droplet sensor based on evanescent-wave linearly chirped fiber Bragg grating,” Opt. Commun. 282(4), 535–539 (2009).
    [CrossRef]
  6. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
    [CrossRef] [PubMed]
  7. Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, and X. Zhang, “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Opt. Express 18(25), 26345–26350 (2010).
    [CrossRef] [PubMed]
  8. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [CrossRef]
  9. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  10. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [CrossRef] [PubMed]
  11. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6(8), 995–997 (1994).
    [CrossRef]
  12. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
    [CrossRef] [PubMed]
  13. M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fibre Bragg gratings,” Electron. Lett. 31(12), 1007–1009 (1995).
    [CrossRef]
  14. J. Canning and M. G. Sceats, “pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
    [CrossRef]
  15. L. Xia, P. Shum, and C. Lu, “Phase-shifted bandpass filter fabrication through CO2 laser irradiation,” Opt. Express 9, 652–657 (2001).
  16. M. A. Rodriguez and S. Malcuit, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1-6), 251–257 (2000).
    [CrossRef]
  17. J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19(24), 2101–2103 (1994).
    [CrossRef] [PubMed]
  18. Z. Lai, Y. Wang, N. Allbritton, G. P. Li, and M. Bachman, “Label-free biosensor by protein grating coupler on planar optical waveguides,” Opt. Lett. 33(15), 1735–1737 (2008).
    [CrossRef] [PubMed]
  19. J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14(16), 6993–6998 (2006).
    [CrossRef] [PubMed]
  20. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).
  21. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  22. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
    [CrossRef] [PubMed]
  23. L. T. Eremenko and A. M. Korolev, “Relation between density and refractive index of organic compounds,” Russ. Chem. Bull. 21(1), 172–174 (1972).
    [CrossRef]
  24. S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, “Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces,” Anal. Biochem. 178(2), 408–413 (1989).
    [CrossRef] [PubMed]
  25. Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
    [CrossRef] [PubMed]
  26. H. Sigrist, A. Collioud, J. F. Clemence, H. Gao, R. Luginbuehl, M. Saenger, and G. Sundarababu, “Surface immobilization of biomolecules by light,” Opt. Eng. 34(8), 2339–2348 (1995).
    [CrossRef]

2010

2009

D. Xiaowei and Z. Ruifeng, “Highly sensitive distributed liquid-droplet sensor based on evanescent-wave linearly chirped fiber Bragg grating,” Opt. Commun. 282(4), 535–539 (2009).
[CrossRef]

2008

2006

J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14(16), 6993–6998 (2006).
[CrossRef] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

2005

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

2004

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2001

2000

M. A. Rodriguez and S. Malcuit, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1-6), 251–257 (2000).
[CrossRef]

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1995

M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fibre Bragg gratings,” Electron. Lett. 31(12), 1007–1009 (1995).
[CrossRef]

H. Sigrist, A. Collioud, J. F. Clemence, H. Gao, R. Luginbuehl, M. Saenger, and G. Sundarababu, “Surface immobilization of biomolecules by light,” Opt. Eng. 34(8), 2339–2348 (1995).
[CrossRef]

1994

J. Canning and M. G. Sceats, “pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[CrossRef]

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6(8), 995–997 (1994).
[CrossRef]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19(24), 2101–2103 (1994).
[CrossRef] [PubMed]

1989

S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, “Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces,” Anal. Biochem. 178(2), 408–413 (1989).
[CrossRef] [PubMed]

1972

L. T. Eremenko and A. M. Korolev, “Relation between density and refractive index of organic compounds,” Russ. Chem. Bull. 21(1), 172–174 (1972).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6(8), 995–997 (1994).
[CrossRef]

Allbritton, N.

Archambault, J. L.

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Bachman, M.

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

Bhatia, S. K.

S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, “Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces,” Anal. Biochem. 178(2), 408–413 (1989).
[CrossRef] [PubMed]

Bredehorst, R.

S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, “Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces,” Anal. Biochem. 178(2), 408–413 (1989).
[CrossRef] [PubMed]

Calvert, J. M.

S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, “Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces,” Anal. Biochem. 178(2), 408–413 (1989).
[CrossRef] [PubMed]

Canning, J.

M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fibre Bragg gratings,” Electron. Lett. 31(12), 1007–1009 (1995).
[CrossRef]

J. Canning and M. G. Sceats, “pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[CrossRef]

Clemence, J. F.

H. Sigrist, A. Collioud, J. F. Clemence, H. Gao, R. Luginbuehl, M. Saenger, and G. Sundarababu, “Surface immobilization of biomolecules by light,” Opt. Eng. 34(8), 2339–2348 (1995).
[CrossRef]

Collioud, A.

H. Sigrist, A. Collioud, J. F. Clemence, H. Gao, R. Luginbuehl, M. Saenger, and G. Sundarababu, “Surface immobilization of biomolecules by light,” Opt. Eng. 34(8), 2339–2348 (1995).
[CrossRef]

Cusano, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Ebendorff-Heidepriem, H.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Eremenko, L. T.

L. T. Eremenko and A. M. Korolev, “Relation between density and refractive index of organic compounds,” Russ. Chem. Bull. 21(1), 172–174 (1972).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fang, X.

Foo, T. C.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Galzerano, G.

Gao, H.

H. Sigrist, A. Collioud, J. F. Clemence, H. Gao, R. Luginbuehl, M. Saenger, and G. Sundarababu, “Surface immobilization of biomolecules by light,” Opt. Eng. 34(8), 2339–2348 (1995).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gatti, D.

Georger, J. H.

S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, “Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces,” Anal. Biochem. 178(2), 408–413 (1989).
[CrossRef] [PubMed]

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hoffmann, P.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Iadicicco, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

Janner, D.

Janos, M.

M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fibre Bragg gratings,” Electron. Lett. 31(12), 1007–1009 (1995).
[CrossRef]

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Korolev, A. M.

L. T. Eremenko and A. M. Korolev, “Relation between density and refractive index of organic compounds,” Russ. Chem. Bull. 21(1), 172–174 (1972).
[CrossRef]

Kringlebotn, J. T.

Lai, Z.

Laporta, P.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Li, G. P.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Liao, C. R.

Ligler, F. S.

S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, “Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces,” Anal. Biochem. 178(2), 408–413 (1989).
[CrossRef] [PubMed]

Lin, B.

Longhi, S.

Lou, J.

Lu, C.

Luginbuehl, R.

H. Sigrist, A. Collioud, J. F. Clemence, H. Gao, R. Luginbuehl, M. Saenger, and G. Sundarababu, “Surface immobilization of biomolecules by light,” Opt. Eng. 34(8), 2339–2348 (1995).
[CrossRef]

Malcuit, S.

M. A. Rodriguez and S. Malcuit, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1-6), 251–257 (2000).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Monro, T. M.

Moore, R. C.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Payne, D. N.

Prior, K. J.

S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, “Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces,” Anal. Biochem. 178(2), 408–413 (1989).
[CrossRef] [PubMed]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6(8), 995–997 (1994).
[CrossRef]

Reekie, L.

Rodriguez, M. A.

M. A. Rodriguez and S. Malcuit, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1-6), 251–257 (2000).
[CrossRef]

Ruan, Y.

Ruifeng, Z.

D. Xiaowei and Z. Ruifeng, “Detection of liquid-level variation using a side-polished fiber Bragg grating,” Opt. Laser Technol. 42(1), 214–218 (2010).
[CrossRef]

D. Xiaowei and Z. Ruifeng, “Highly sensitive distributed liquid-droplet sensor based on evanescent-wave linearly chirped fiber Bragg grating,” Opt. Commun. 282(4), 535–539 (2009).
[CrossRef]

Saenger, M.

H. Sigrist, A. Collioud, J. F. Clemence, H. Gao, R. Luginbuehl, M. Saenger, and G. Sundarababu, “Surface immobilization of biomolecules by light,” Opt. Eng. 34(8), 2339–2348 (1995).
[CrossRef]

Sceats, M. G.

J. Canning and M. G. Sceats, “pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[CrossRef]

Schatz, G. C.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Shriver-Lake, L. C.

S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, “Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces,” Anal. Biochem. 178(2), 408–413 (1989).
[CrossRef] [PubMed]

Shum, P.

Sigrist, H.

H. Sigrist, A. Collioud, J. F. Clemence, H. Gao, R. Luginbuehl, M. Saenger, and G. Sundarababu, “Surface immobilization of biomolecules by light,” Opt. Eng. 34(8), 2339–2348 (1995).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sundarababu, G.

H. Sigrist, A. Collioud, J. F. Clemence, H. Gao, R. Luginbuehl, M. Saenger, and G. Sundarababu, “Surface immobilization of biomolecules by light,” Opt. Eng. 34(8), 2339–2348 (1995).
[CrossRef]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Tjin, S. C.

Tong, L.

Van Duyne, R. P.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Wang, D. N.

Wang, G.

Wang, Y.

Warren-Smith, S.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Xia, L.

Xiaowei, D.

D. Xiaowei and Z. Ruifeng, “Detection of liquid-level variation using a side-polished fiber Bragg grating,” Opt. Laser Technol. 42(1), 214–218 (2010).
[CrossRef]

D. Xiaowei and Z. Ruifeng, “Highly sensitive distributed liquid-droplet sensor based on evanescent-wave linearly chirped fiber Bragg grating,” Opt. Commun. 282(4), 535–539 (2009).
[CrossRef]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Ye, Z.

Zhang, H.

Zhang, X.

Zhang, Y.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Anal. Biochem.

S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, “Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces,” Anal. Biochem. 178(2), 408–413 (1989).
[CrossRef] [PubMed]

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Electron. Lett.

M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fibre Bragg gratings,” Electron. Lett. 31(12), 1007–1009 (1995).
[CrossRef]

J. Canning and M. G. Sceats, “pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30(16), 1344–1345 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6(8), 995–997 (1994).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Nano Lett.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun.

D. Xiaowei and Z. Ruifeng, “Highly sensitive distributed liquid-droplet sensor based on evanescent-wave linearly chirped fiber Bragg grating,” Opt. Commun. 282(4), 535–539 (2009).
[CrossRef]

M. A. Rodriguez and S. Malcuit, “Transmission properties of refractive index-shifted Bragg gratings,” Opt. Commun. 177(1-6), 251–257 (2000).
[CrossRef]

Opt. Eng.

H. Sigrist, A. Collioud, J. F. Clemence, H. Gao, R. Luginbuehl, M. Saenger, and G. Sundarababu, “Surface immobilization of biomolecules by light,” Opt. Eng. 34(8), 2339–2348 (1995).
[CrossRef]

Opt. Express

Opt. Laser Technol.

D. Xiaowei and Z. Ruifeng, “Detection of liquid-level variation using a side-polished fiber Bragg grating,” Opt. Laser Technol. 42(1), 214–218 (2010).
[CrossRef]

Opt. Lett.

Russ. Chem. Bull.

L. T. Eremenko and A. M. Korolev, “Relation between density and refractive index of organic compounds,” Russ. Chem. Bull. 21(1), 172–174 (1972).
[CrossRef]

Other

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic model (a) and index profile (b) of adsorption induced phase shifted µFBG with selected area immobilization of bio-molecules. The coating with thickness d is located only at the middle segment with length L2 , and it will introduce an increase of effective index.

Fig. 2
Fig. 2

Sensitivity of microfiber effective index change as a function of diameter, (a) for sensing layer thickness (surface density) of bio-molecule adsorption and, (b) for sensing refractive index (RI) change in the surrounding medium.

Fig. 3
Fig. 3

Reflection spectra (Y axis on the left) and total round-trip phase change in entire µFBG (Y axis on the right) for different thicknesses of protein coating, with 1/3 of the total length in the middle is coated. Solid lines represent the spectrum and total round-trip phase change without coating, while dashed broken lines are for 0.2nm thick coating, and dashed lines are for a thickness of 0.37nm. The spectrum of the middle segment is shown as dotted line, where κL2 should be less than 1.

Fig. 4
Fig. 4

Dip positions in reflection spectrum with varying protein coating thickness for a sensing length of L2 = L/6. Circle dotted line represents numerical method from multiplication of three matrixes, while triangle-dotted line and cross-dotted line are obtained from modeling using strict phase shift and linear phase shift approximation, respectively. The curve of “original reflection spectrum” inserted is used to show the positions of band-edge visually.

Fig. 5
Fig. 5

Bio-molecules immobilized onto the silica surface of middle segment of µFBG. Two methods for localized surface functionalization are proposed, (a), by immersing the middle segment in a silane solution, or (b), by photo-immobilization of polymer monolayer onto middle segment. With functionalization taking place only in the middle segment, the bonding of antibody molecules (c) and antigens (d) are shown schematically.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δ n e f f = χ ( n p n s ) d
Δ n e f f = α Δ n a
κ = π δ n a c λ 1
σ = 2 π ( δ n d c + Δ n n e f f ) λ 1 = σ 0 + 2 π Δ n n e f f λ 1
[ F ( L 1 ) B ( L 1 ) ] = [ cosh ( γ L 2 ) i φ γ sinh ( γ L 2 ) i κ γ sinh ( γ L 2 ) i κ γ sinh ( γ L 2 ) cosh ( γ L 2 ) + i φ γ sinh ( γ L 2 ) ] [ F ( L 1 + L 2 ) B ( L 1 + L 2 ) ]
φ = Δ ( 2 π n e f f λ ) = 2 π n e f f ( 1 λ 1 λ B 0 ) + 2 π λ Δ n n e f f = φ 0 + ( σ σ 0 )
[ F ( 0 ) B ( 0 ) ] = M 1 M 2 M 3 [ F ( L ) B ( L ) ]
Φ ( λ , Δ n n e f f ) = π + 2 Θ ( λ , Δ n n e f f ) + 2 arctan [ φ 0 γ 0 tanh ( γ 0 L 2 ) ]
S = Δ λ p Δ d = Φ d / Φ λ
Θ ( λ , Δ n n e f f ) = ( σ σ 0 ) L 2 = 2 π λ Δ n n e f f L 2
Θ = 2 π χ ( n p 1 ) λ d L 2 = 2 χ ( n p 1 ) λ D . ρ M = 2 χ λ D . η M
d e f f = P ρ = P η ( n 0 1 )

Metrics