Abstract

We used ultrafast Fourier-plane optical-parametric-amplification (OPA) imaging to simultaneously image, wavelength-shift, and amplify complex two-dimensional objects with spatial features from 1.1 to 10.1 line pairs/millimeter (lp/mm) in the vertical dimension and from 2.0 to 16.0 lp/mm in the horizontal dimension, corresponding to a two-dimensional space-bandwidth product (SBP) of ~46,000. This represents an increase in image complexity over previous analogous OPA imaging systems by over three orders of magnitude. We observe both wavelength-shifting the image from 930nm to a wavelength of 700nm and image amplification by two orders of magnitude. Our wavelength-shifted image has a SBP of ~30,000.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [CrossRef]
  2. C. C. Wang and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6(8), 169–171 (1965).
    [CrossRef]
  3. F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (Wiley, 1973).
  4. J. E. Midwinter, “Image conversion from 1.6um to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–71 (1968).
    [CrossRef]
  5. E. Lantz and F. Devaux, “Parametric amplification of images,” J. Opt. B Quantum Semiclassical Opt. 9(2), 279–286 (1997).
    [CrossRef]
  6. F. Devaux and E. Lantz, “Parametric amplification of a polychromatic image,” J. Opt. Soc. Am. B 12(11), 2245–2253 (1995).
    [CrossRef]
  7. F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–38 (1995).
  8. F. Devaux and E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114(3-4), 295–300 (1995).
    [CrossRef]
  9. J. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2004).
  10. D. Guthals and D. Sox, “Quantum limited optical parametric image amplification,” in Proceedings of the International Conference on Lasers, 1989), 808–816.
  11. G. W. Faris and M. Banks, “Upconverting time gate for imaging through highly scattering media,” Opt. Lett. 19(22), 1813–1816 (1994).
    [CrossRef] [PubMed]
  12. A. H. Firester, “Image upconversion: part III,” J. Appl. Phys. 41(2), 703–710 (1970).
    [CrossRef]
  13. P. V. Avizonis, F. A. Hopf, D. W. Bomberger, S. F. Jacobs, A. Tomita, and K. H. Womack, “Optical phase conjugation in a lithium formate crystal,” Appl. Phys. Lett. 31(7), 435–438 (1977).
    [CrossRef]
  14. L. Lefort and A. Barthelemy, “Revisiting optical phase conjugation by difference-frequency generation,” Opt. Lett. 21(12), 848–850 (1996).
    [CrossRef] [PubMed]
  15. F. Devaux, G. Le Tolguenec, and E. Lantz, “Phase conjugate imaging by type II parametric amplification,” Opt. Commun. 147(4-6), 309–312 (1998).
    [CrossRef]
  16. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13(3), 470–473 (1996).
    [CrossRef]
  17. F. Devaux, A. Mosset, E. Lantz, S. Monneret, and H. Le Gall, “Image upconversion from the visible to the UV domain: application to dynamic UV microstereolithography,” Appl. Opt. 40(28), 4953–4957 (2001).
    [CrossRef]
  18. J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “High-resolution two-dimensional image upconversion of incoherent light,” Opt. Lett. 35(22), 3796–3798 (2010).
    [CrossRef] [PubMed]
  19. J. Watson, P. Georges, T. Lépine, B. Alonzi, and A. Brun, “Imaging in diffuse media with ultrafast degenerate optical parametric amplification,” Opt. Lett. 20(3), 231–233 (1995).
    [CrossRef] [PubMed]
  20. R. W. Boyd, Nonlinear Optics (Academic Press, 2002).
  21. N. P. Barnes and V. J. Corcoran, “Parametric generation processes: spectral bandwidth and acceptance angles,” Appl. Opt. 15(3), 696–699 (1976).
    [CrossRef] [PubMed]
  22. A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth,” Appl. Phys. Lett. 72(2), 147–149 (1998).
    [CrossRef]
  23. I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” J. Appl. Phys. 90(9), 4328–4337 (2001).
    [CrossRef]
  24. W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124(6), 1646–1654 (1961).
    [CrossRef]
  25. V. Krylov, J. Gallus, U. P. Wild, A. Kalintsev, and A. Rebane, “Femtosecond noncollinear and collinear parametric generation and amplification in BBO crystal,” Appl. Phys. B 70(2), 163–168 (2000).
    [CrossRef]
  26. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).
  27. R. A. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
    [CrossRef]

2010 (1)

2001 (2)

I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” J. Appl. Phys. 90(9), 4328–4337 (2001).
[CrossRef]

F. Devaux, A. Mosset, E. Lantz, S. Monneret, and H. Le Gall, “Image upconversion from the visible to the UV domain: application to dynamic UV microstereolithography,” Appl. Opt. 40(28), 4953–4957 (2001).
[CrossRef]

2000 (1)

V. Krylov, J. Gallus, U. P. Wild, A. Kalintsev, and A. Rebane, “Femtosecond noncollinear and collinear parametric generation and amplification in BBO crystal,” Appl. Phys. B 70(2), 163–168 (2000).
[CrossRef]

1998 (2)

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth,” Appl. Phys. Lett. 72(2), 147–149 (1998).
[CrossRef]

F. Devaux, G. Le Tolguenec, and E. Lantz, “Phase conjugate imaging by type II parametric amplification,” Opt. Commun. 147(4-6), 309–312 (1998).
[CrossRef]

1997 (1)

E. Lantz and F. Devaux, “Parametric amplification of images,” J. Opt. B Quantum Semiclassical Opt. 9(2), 279–286 (1997).
[CrossRef]

1996 (2)

1995 (4)

J. Watson, P. Georges, T. Lépine, B. Alonzi, and A. Brun, “Imaging in diffuse media with ultrafast degenerate optical parametric amplification,” Opt. Lett. 20(3), 231–233 (1995).
[CrossRef] [PubMed]

F. Devaux and E. Lantz, “Parametric amplification of a polychromatic image,” J. Opt. Soc. Am. B 12(11), 2245–2253 (1995).
[CrossRef]

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–38 (1995).

F. Devaux and E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114(3-4), 295–300 (1995).
[CrossRef]

1994 (1)

1977 (1)

P. V. Avizonis, F. A. Hopf, D. W. Bomberger, S. F. Jacobs, A. Tomita, and K. H. Womack, “Optical phase conjugation in a lithium formate crystal,” Appl. Phys. Lett. 31(7), 435–438 (1977).
[CrossRef]

1976 (1)

1970 (2)

A. H. Firester, “Image upconversion: part III,” J. Appl. Phys. 41(2), 703–710 (1970).
[CrossRef]

R. A. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

1968 (1)

J. E. Midwinter, “Image conversion from 1.6um to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–71 (1968).
[CrossRef]

1965 (1)

C. C. Wang and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6(8), 169–171 (1965).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

1961 (1)

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124(6), 1646–1654 (1961).
[CrossRef]

Alonzi, B.

Andrews, R. A.

R. A. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Avizonis, P. V.

P. V. Avizonis, F. A. Hopf, D. W. Bomberger, S. F. Jacobs, A. Tomita, and K. H. Womack, “Optical phase conjugation in a lithium formate crystal,” Appl. Phys. Lett. 31(7), 435–438 (1977).
[CrossRef]

Banks, M.

Barnes, N. P.

Barthelemy, A.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Bomberger, D. W.

P. V. Avizonis, F. A. Hopf, D. W. Bomberger, S. F. Jacobs, A. Tomita, and K. H. Womack, “Optical phase conjugation in a lithium formate crystal,” Appl. Phys. Lett. 31(7), 435–438 (1977).
[CrossRef]

Brun, A.

Comaskey, B. J.

I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” J. Appl. Phys. 90(9), 4328–4337 (2001).
[CrossRef]

Corcoran, V. J.

Dam, J. S.

Devaux, F.

F. Devaux, A. Mosset, E. Lantz, S. Monneret, and H. Le Gall, “Image upconversion from the visible to the UV domain: application to dynamic UV microstereolithography,” Appl. Opt. 40(28), 4953–4957 (2001).
[CrossRef]

F. Devaux, G. Le Tolguenec, and E. Lantz, “Phase conjugate imaging by type II parametric amplification,” Opt. Commun. 147(4-6), 309–312 (1998).
[CrossRef]

E. Lantz and F. Devaux, “Parametric amplification of images,” J. Opt. B Quantum Semiclassical Opt. 9(2), 279–286 (1997).
[CrossRef]

F. Devaux and E. Lantz, “Parametric amplification of a polychromatic image,” J. Opt. Soc. Am. B 12(11), 2245–2253 (1995).
[CrossRef]

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–38 (1995).

F. Devaux and E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114(3-4), 295–300 (1995).
[CrossRef]

Doreau, P. A.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–38 (1995).

Dorsch, R. G.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Faris, G. W.

Ferreira, C.

Firester, A. H.

A. H. Firester, “Image upconversion: part III,” J. Appl. Phys. 41(2), 703–710 (1970).
[CrossRef]

Gallus, J.

V. Krylov, J. Gallus, U. P. Wild, A. Kalintsev, and A. Rebane, “Femtosecond noncollinear and collinear parametric generation and amplification in BBO crystal,” Appl. Phys. B 70(2), 163–168 (2000).
[CrossRef]

Georges, P.

Gindre, D.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–38 (1995).

Hopf, F. A.

P. V. Avizonis, F. A. Hopf, D. W. Bomberger, S. F. Jacobs, A. Tomita, and K. H. Womack, “Optical phase conjugation in a lithium formate crystal,” Appl. Phys. Lett. 31(7), 435–438 (1977).
[CrossRef]

Jacobs, S. F.

P. V. Avizonis, F. A. Hopf, D. W. Bomberger, S. F. Jacobs, A. Tomita, and K. H. Womack, “Optical phase conjugation in a lithium formate crystal,” Appl. Phys. Lett. 31(7), 435–438 (1977).
[CrossRef]

Jovanovic, I.

I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” J. Appl. Phys. 90(9), 4328–4337 (2001).
[CrossRef]

Kalintsev, A.

V. Krylov, J. Gallus, U. P. Wild, A. Kalintsev, and A. Rebane, “Femtosecond noncollinear and collinear parametric generation and amplification in BBO crystal,” Appl. Phys. B 70(2), 163–168 (2000).
[CrossRef]

Kobayashi, T.

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth,” Appl. Phys. Lett. 72(2), 147–149 (1998).
[CrossRef]

Krylov, V.

V. Krylov, J. Gallus, U. P. Wild, A. Kalintsev, and A. Rebane, “Femtosecond noncollinear and collinear parametric generation and amplification in BBO crystal,” Appl. Phys. B 70(2), 163–168 (2000).
[CrossRef]

Lacourt, A.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–38 (1995).

Lantz, E.

F. Devaux, A. Mosset, E. Lantz, S. Monneret, and H. Le Gall, “Image upconversion from the visible to the UV domain: application to dynamic UV microstereolithography,” Appl. Opt. 40(28), 4953–4957 (2001).
[CrossRef]

F. Devaux, G. Le Tolguenec, and E. Lantz, “Phase conjugate imaging by type II parametric amplification,” Opt. Commun. 147(4-6), 309–312 (1998).
[CrossRef]

E. Lantz and F. Devaux, “Parametric amplification of images,” J. Opt. B Quantum Semiclassical Opt. 9(2), 279–286 (1997).
[CrossRef]

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–38 (1995).

F. Devaux and E. Lantz, “Parametric amplification of a polychromatic image,” J. Opt. Soc. Am. B 12(11), 2245–2253 (1995).
[CrossRef]

F. Devaux and E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114(3-4), 295–300 (1995).
[CrossRef]

Laurent, T.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–38 (1995).

Le Gall, H.

Le Tolguenec, G.

F. Devaux, G. Le Tolguenec, and E. Lantz, “Phase conjugate imaging by type II parametric amplification,” Opt. Commun. 147(4-6), 309–312 (1998).
[CrossRef]

Lefort, L.

Lépine, T.

Lohmann, A. W.

Louisell, W. H.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124(6), 1646–1654 (1961).
[CrossRef]

Maillotte, H.

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–38 (1995).

Mendlovic, D.

Midwinter, J. E.

J. E. Midwinter, “Image conversion from 1.6um to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–71 (1968).
[CrossRef]

Monneret, S.

Mosset, A.

Pedersen, C.

Pennington, D. M.

I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” J. Appl. Phys. 90(9), 4328–4337 (2001).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Racette, G. W.

C. C. Wang and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6(8), 169–171 (1965).
[CrossRef]

Rebane, A.

V. Krylov, J. Gallus, U. P. Wild, A. Kalintsev, and A. Rebane, “Femtosecond noncollinear and collinear parametric generation and amplification in BBO crystal,” Appl. Phys. B 70(2), 163–168 (2000).
[CrossRef]

Shirakawa, A.

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth,” Appl. Phys. Lett. 72(2), 147–149 (1998).
[CrossRef]

Siegman, A. E.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124(6), 1646–1654 (1961).
[CrossRef]

Tidemand-Lichtenberg, P.

Tomita, A.

P. V. Avizonis, F. A. Hopf, D. W. Bomberger, S. F. Jacobs, A. Tomita, and K. H. Womack, “Optical phase conjugation in a lithium formate crystal,” Appl. Phys. Lett. 31(7), 435–438 (1977).
[CrossRef]

Wang, C. C.

C. C. Wang and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6(8), 169–171 (1965).
[CrossRef]

Watson, J.

Wild, U. P.

V. Krylov, J. Gallus, U. P. Wild, A. Kalintsev, and A. Rebane, “Femtosecond noncollinear and collinear parametric generation and amplification in BBO crystal,” Appl. Phys. B 70(2), 163–168 (2000).
[CrossRef]

Womack, K. H.

P. V. Avizonis, F. A. Hopf, D. W. Bomberger, S. F. Jacobs, A. Tomita, and K. H. Womack, “Optical phase conjugation in a lithium formate crystal,” Appl. Phys. Lett. 31(7), 435–438 (1977).
[CrossRef]

Yariv, A.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124(6), 1646–1654 (1961).
[CrossRef]

Zalevsky, Z.

Appl. Opt. (2)

Appl. Phys. B (1)

V. Krylov, J. Gallus, U. P. Wild, A. Kalintsev, and A. Rebane, “Femtosecond noncollinear and collinear parametric generation and amplification in BBO crystal,” Appl. Phys. B 70(2), 163–168 (2000).
[CrossRef]

Appl. Phys. Lett. (4)

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth,” Appl. Phys. Lett. 72(2), 147–149 (1998).
[CrossRef]

P. V. Avizonis, F. A. Hopf, D. W. Bomberger, S. F. Jacobs, A. Tomita, and K. H. Womack, “Optical phase conjugation in a lithium formate crystal,” Appl. Phys. Lett. 31(7), 435–438 (1977).
[CrossRef]

J. E. Midwinter, “Image conversion from 1.6um to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–71 (1968).
[CrossRef]

C. C. Wang and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6(8), 169–171 (1965).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

J. Appl. Phys. (2)

I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” J. Appl. Phys. 90(9), 4328–4337 (2001).
[CrossRef]

A. H. Firester, “Image upconversion: part III,” J. Appl. Phys. 41(2), 703–710 (1970).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

E. Lantz and F. Devaux, “Parametric amplification of images,” J. Opt. B Quantum Semiclassical Opt. 9(2), 279–286 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nonlinear Opt. (1)

F. Devaux, E. Lantz, A. Lacourt, D. Gindre, H. Maillotte, P. A. Doreau, and T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–38 (1995).

Opt. Commun. (2)

F. Devaux and E. Lantz, “Transfer function of spatial frequencies in parametric image amplification: experimental analysis and application to picosecond spatial filtering,” Opt. Commun. 114(3-4), 295–300 (1995).
[CrossRef]

F. Devaux, G. Le Tolguenec, and E. Lantz, “Phase conjugate imaging by type II parametric amplification,” Opt. Commun. 147(4-6), 309–312 (1998).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. (2)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I,” Phys. Rev. 124(6), 1646–1654 (1961).
[CrossRef]

Other (5)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).

F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (Wiley, 1973).

J. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2004).

D. Guthals and D. Sox, “Quantum limited optical parametric image amplification,” in Proceedings of the International Conference on Lasers, 1989), 808–816.

R. W. Boyd, Nonlinear Optics (Academic Press, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A typical OPA imaging apparatus. An image target is illuminated with infrared light and transferred by a lens to a nonlinear crystal. A shorter-wavelength pump beam (shown in blue) overlaps the image-bearing signal at the nonlinear medium. The OPA process generates an intense replica of the image at a new (typically visible) wavelength. It simultaneously amplifies the infrared light (the amplified IR beam is not shown). The imaging or inverse Fourier-transforming (FT−1) lens then images or inverse Fourier transforms the field for detection at the camera.

Fig. 2
Fig. 2

(a) The input spectrum and (b) the two output spectra after the OPA are shown after background subtraction. The 930nm peak output spectrum is clearly broadened from the input spectrum. This result occurs during OPA when either of the input beams is not well-collimated. In OPA imaging, an image bearing signal cannot, by definition, be well-collimated and this broadening of the spectrum for the input wavelength will always occur. The output beam at the difference frequency is also clearly seen to have less bandwidth than the output OPA beam. This is also expected, as conservation of energy dictates that the bandwidth of the lower wavelength output beam during OPA will be narrower than the bandwidth of the longer wavelength beam.

Fig. 3
Fig. 3

OPA imaging experimental apparatus. The output from the amplifier was split into two beams. Most of the light was frequency-doubled to act as the OPA pump. The rest generated supercontinuum, part of which was used as the OPA input, which was passed through an image target. The pump was spatially filtered. The two beams were overlapped at a 1mm BBO crystal. A filter before the camera transmitted only the OPA beam (or the DFG beam), which was detected by the camera.

Fig. 4
Fig. 4

Spatial profiles of the pump beam both (a) before and (b) after the spatial filter. The spatial profile before filtering displays several hot spots in the most intense regions of the beam. These hot spots are smoothed out by the filter. If they had been present in the beam, there would have been non-uniform amplification across the input image during the OPA process.

Fig. 5
Fig. 5

(a) The USAF 1951 image target, containing resolvable spatial frequencies from 1.1 lp/mm in the vertical direction and 2 lp/mm in the horizontal direction to 57 lp/mm in both directions. (b) Decreasing the supercontinuum intensity so that the 930nm input image was close to the camera noise floor resulted in this barely measurable seed image. (c) Amplified OPA image at 930nm (i.e., not wavelength-shifted) with resolvable features as fine as 11.3 lp/mm. (d) The wavelength down-converted (frequency-upconverted) image recovered at 700nm with resolvable features as fine as 10.1 lp/mm, is observed to be demagnified and rotated 180° with respect to the input image and OPA image.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω P U M P = ω O P A + ω D F G
k P U M P = k O P A + k D F G

Metrics