R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[Crossref]
L. J. Klein, S. Ingvarsson, and H. F. Hamann, “Changing the emission of polarized thermal radiation from metallic nanoheaters,” Opt. Express 17, 17963–17969 (2009).
[Crossref]
[PubMed]
H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008).
[Crossref]
[PubMed]
Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[Crossref]
A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[Crossref]
F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418–428 (2005).
[Crossref]
F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005).
[Crossref]
F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[Crossref]
I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003).
[Crossref]
A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[Crossref]
C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[Crossref]
S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[Crossref]
E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[Crossref]
D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983).
[Crossref]
F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[Crossref]
Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[Crossref]
S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
[Crossref]
[PubMed]
S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[Crossref]
F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005).
[Crossref]
F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418–428 (2005).
[Crossref]
F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[Crossref]
I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003).
[Crossref]
R. Smith, F. Jones, and R. Chasmar, The Detection and Measurement of Infra-red Radiation (Oxford Univ. Press, 1957).
C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[Crossref]
F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[Crossref]
I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003).
[Crossref]
S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[Crossref]
D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983).
[Crossref]
D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983).
[Crossref]
F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005).
[Crossref]
F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418–428 (2005).
[Crossref]
F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[Crossref]
I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003).
[Crossref]
E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[Crossref]
E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[Crossref]
L. J. Klein, S. Ingvarsson, and H. F. Hamann, “Changing the emission of polarized thermal radiation from metallic nanoheaters,” Opt. Express 17, 17963–17969 (2009).
[Crossref]
[PubMed]
Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[Crossref]
H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008).
[Crossref]
[PubMed]
S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
[Crossref]
[PubMed]
S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[Crossref]
F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005).
[Crossref]
L. J. Klein, S. Ingvarsson, and H. F. Hamann, “Changing the emission of polarized thermal radiation from metallic nanoheaters,” Opt. Express 17, 17963–17969 (2009).
[Crossref]
[PubMed]
Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[Crossref]
H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008).
[Crossref]
[PubMed]
S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
[Crossref]
[PubMed]
R. Smith, F. Jones, and R. Chasmar, The Detection and Measurement of Infra-red Radiation (Oxford Univ. Press, 1957).
S. Æ. Jónsson, “Nonlinear thermal electric analysis of platinum microheaters,” Master’s thesis, University of Iceland (2009).
L. J. Klein, S. Ingvarsson, and H. F. Hamann, “Changing the emission of polarized thermal radiation from metallic nanoheaters,” Opt. Express 17, 17963–17969 (2009).
[Crossref]
[PubMed]
Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[Crossref]
S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
[Crossref]
[PubMed]
E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[Crossref]
S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge Univ. Press, 1996).
[Crossref]
A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[Crossref]
H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008).
[Crossref]
[PubMed]
S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
[Crossref]
[PubMed]
R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[Crossref]
R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[Crossref]
D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983).
[Crossref]
S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[Crossref]
A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[Crossref]
E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[Crossref]
A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[Crossref]
S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[Crossref]
Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[Crossref]
R. Smith, F. Jones, and R. Chasmar, The Detection and Measurement of Infra-red Radiation (Oxford Univ. Press, 1957).
A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[Crossref]
R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[Crossref]
C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[Crossref]
R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[Crossref]
C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[Crossref]
C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[Crossref]
A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[Crossref]
R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94, 163110 (2009).
[Crossref]
S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Devices 46, 675–681 (1999).
[Crossref]
I. Codreanu, F. J. González, and G. D. Boreman, “Detection mechanisms in microstrip dipole antenna-coupled infrared detectors,” Infrared Phys. Technol. 44, 155–163 (2003).
[Crossref]
F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418–428 (2005).
[Crossref]
F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[Crossref]
E. N. Grossman, J. A. Koch, C. D. Reintsema, and A. Green, “Lithographic dipole antenna properties at 10 μm wavelength: comparison of methods-of-moments predictions with experiment,” Int. J. Infrared Millim. Waves 19, 817–825 (1998).
[Crossref]
H. F. Hamann, J. A. Lacey, and S. Ingvarsson, “Progress towards a thermally driven, infra-red near-field source using nanoheaters,” J. Microsc. 229, 512–516 (2008).
[Crossref]
[PubMed]
A. Kosarev, M. Moreno, A. Torres, and C. Zuniga, “IR sensors based on silicon-germanium-boron alloys deposited by plasma: fabrication and characterization,” J. Non-Cryst. Solids 354, 2561–2564 (2008).
[Crossref]
F. J. González, B. Illic, and G. D. Boreman, “Antenna-coupled microbolometers on a silicon-nitride membrane,”Microwave Opt. Technol. Lett. 47, 546–548 (2005).
[Crossref]
S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
[Crossref]
[PubMed]
L. J. Klein, S. Ingvarsson, and H. F. Hamann, “Changing the emission of polarized thermal radiation from metallic nanoheaters,” Opt. Express 17, 17963–17969 (2009).
[Crossref]
[PubMed]
Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78, 085402 (2008).
[Crossref]
D. Fleetwood, J. Masden, and N. Giordano, “1/f Noise in platinum films and ultrathin platinum wires: evidence for a common, bulk origin,” Phys. Rev. Lett. 50, 450–453 (1983).
[Crossref]
A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–210 (2003).
[Crossref]
C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90, 212–214 (2001).
[Crossref]
R. Smith, F. Jones, and R. Chasmar, The Detection and Measurement of Infra-red Radiation (Oxford Univ. Press, 1957).
S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge Univ. Press, 1996).
[Crossref]
S. Æ. Jónsson, “Nonlinear thermal electric analysis of platinum microheaters,” Master’s thesis, University of Iceland (2009).