Abstract

Nanostructured materials, designed for enhanced light absorption, are receiving increased scientific and technological interest. In this paper we propose a physical criterion for designing the cross-sectional shape of plasmonic nanowires for improved absorption of a given tightly focused illumination. The idea is to design a shape which increases the matching between the nanowire plasmon resonance field and the incident field. As examples, we design nanowire shapes for two illumination cases: a tightly focused plane wave and a tightly focused beam containing a line singularity. We show that properly shaped and positioned silver nanowires that occupy a relatively small portion of the beam-waist area can absorb up to 65% of the total power of the incident beam.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer 2007).
  2. Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
    [CrossRef] [PubMed]
  3. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
    [CrossRef] [PubMed]
  4. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B 73(3), 035403 (2006).
    [CrossRef]
  5. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A, Pure Appl. Opt. 7(2), S32–S37 (2005).
    [CrossRef]
  6. J. P. Kottmann, O. J. F. Martin, D. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
    [CrossRef]
  7. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001).
    [CrossRef] [PubMed]
  8. M. I. Tribelsky, “Anomalous light absorption by small particles,” arXiv:0912.3644v1.
  9. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
    [CrossRef]
  10. M. Gu and X. Li, “The road to multi-dimensional bit-by-bit optical data storage,” Opt. Photonics News 21(7), 28–33 (2010).
    [CrossRef]
  11. C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18(7), 1579–1587 (2001).
    [CrossRef]
  12. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  13. A. Normatov, B. Spektor, and J. Shamir, “High numerical aperture focusing of singular beams,” Proc. SPIE 7277, 727709 (2009).
  14. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II Structure of the image field in an optical system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [CrossRef]
  15. C. Rockstuhl and H. P. Herzig, “Wavelength-dependent optical force on elliptical silver cylinders at plasmon resonance,” Opt. Lett. 29(18), 2181–2183 (2004).
    [CrossRef] [PubMed]
  16. J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25(2), 493–514 (2008).
    [CrossRef]
  17. K. Sendur, W. Challener, and O. Mryasov, “Interaction of spherical nanoparticles with a highly focused beam of light,” Opt. Express 16(5), 2874–2886 (2008).
    [CrossRef] [PubMed]
  18. N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Europ. Opt. Soc. Rap. Public. 4, 09014 (2009).
    [CrossRef]
  19. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008).
    [CrossRef] [PubMed]
  20. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15(19), 12017–12029 (2007).
    [CrossRef] [PubMed]
  21. B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
    [CrossRef] [PubMed]
  22. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
    [CrossRef]
  23. A. Normatov, B. Spektor, and J. Shamir, “The quadratic phase factor of tightly focused wavefronts,” Opt. Commun. 283(19), 3585–3590 (2010).
    [CrossRef]
  24. A. Normatov, B. Spektor, and J. Shamir, “Tight focusing of wavefronts with piecewise quasi-constant phase,” Opt. Eng. 48(2), 028001 (2009).
    [CrossRef]
  25. Y. Leviatan and A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antenn. Propag. 35(10), 1119–1127 (1987).
    [CrossRef]
  26. Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antenn. Propag. 36(7), 1026–1031 (1988).
    [CrossRef]
  27. Y. Leviatan, A. Boag, and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antenn. Propag. 36(12), 1722–1734 (1988).
    [CrossRef]
  28. J. J. Stamnes, “Focusing of two-dimensional waves,” J. Opt. Soc. Am. 71(1), 15–31 (1981).
    [CrossRef]
  29. J. J. Stamnes and H. A. Eide, “Exact and approximate solutions for focusing of two-dimensional waves. I. Theory,” J. Opt. Soc. Am. A 15(5), 1285–1291 (1998).
    [CrossRef]
  30. U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F Met. Phys. 4(7), 999–1014 (1974).
    [CrossRef]
  31. M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express 18(10), 10878–10887 (2010).
    [CrossRef] [PubMed]
  32. B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
    [CrossRef]
  33. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005).
    [CrossRef] [PubMed]

2010 (4)

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
[CrossRef]

M. Gu and X. Li, “The road to multi-dimensional bit-by-bit optical data storage,” Opt. Photonics News 21(7), 28–33 (2010).
[CrossRef]

A. Normatov, B. Spektor, and J. Shamir, “The quadratic phase factor of tightly focused wavefronts,” Opt. Commun. 283(19), 3585–3590 (2010).
[CrossRef]

M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express 18(10), 10878–10887 (2010).
[CrossRef] [PubMed]

2009 (4)

A. Normatov, B. Spektor, and J. Shamir, “Tight focusing of wavefronts with piecewise quasi-constant phase,” Opt. Eng. 48(2), 028001 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

A. Normatov, B. Spektor, and J. Shamir, “High numerical aperture focusing of singular beams,” Proc. SPIE 7277, 727709 (2009).

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Europ. Opt. Soc. Rap. Public. 4, 09014 (2009).
[CrossRef]

2008 (4)

2007 (1)

2006 (3)

B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B 73(3), 035403 (2006).
[CrossRef]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[CrossRef]

2005 (2)

M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A, Pure Appl. Opt. 7(2), S32–S37 (2005).
[CrossRef]

2004 (1)

2003 (1)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

2001 (3)

J. P. Kottmann, O. J. F. Martin, D. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[CrossRef]

J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001).
[CrossRef] [PubMed]

C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18(7), 1579–1587 (2001).
[CrossRef]

2000 (1)

1998 (1)

1988 (2)

Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antenn. Propag. 36(7), 1026–1031 (1988).
[CrossRef]

Y. Leviatan, A. Boag, and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antenn. Propag. 36(12), 1722–1734 (1988).
[CrossRef]

1987 (1)

Y. Leviatan and A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antenn. Propag. 35(10), 1119–1127 (1987).
[CrossRef]

1981 (1)

1974 (1)

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F Met. Phys. 4(7), 999–1014 (1974).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II Structure of the image field in an optical system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Agio, M.

M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express 18(10), 10878–10887 (2010).
[CrossRef] [PubMed]

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Europ. Opt. Soc. Rap. Public. 4, 09014 (2009).
[CrossRef]

Atwater, H. A.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
[CrossRef]

Bachelier, G.

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Bashevoy, M. V.

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Billaud, P.

Blanco, L. A.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B 73(3), 035403 (2006).
[CrossRef]

Boag, A.

Y. Leviatan, A. Boag, and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antenn. Propag. 36(12), 1722–1734 (1988).
[CrossRef]

Y. Leviatan, A. Boag, and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antenn. Propag. 36(12), 1722–1734 (1988).
[CrossRef]

Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antenn. Propag. 36(7), 1026–1031 (1988).
[CrossRef]

Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antenn. Propag. 36(7), 1026–1031 (1988).
[CrossRef]

Y. Leviatan and A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antenn. Propag. 35(10), 1119–1127 (1987).
[CrossRef]

Bonnet, C.

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Brown, T. G.

Broyer, M.

Challener, W.

Chen, X.-W.

Cottancin, E.

Dholakia, K.

Dienerowitz, M.

Edwardson, S. P.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Eide, H. A.

Fedotov, V. A.

Ferry, V. E.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
[CrossRef]

Gu, M.

M. Gu and X. Li, “The road to multi-dimensional bit-by-bit optical data storage,” Opt. Photonics News 21(7), 28–33 (2010).
[CrossRef]

Guffey, M. J.

Guo, W.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Guyot-Sionnest, P.

Herzig, H. P.

Im, S. H.

B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

Kottmann, J. P.

J. P. Kottmann, O. J. F. Martin, D. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[CrossRef]

J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001).
[CrossRef] [PubMed]

Krauss, T. F.

Kreibig, U.

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F Met. Phys. 4(7), 999–1014 (1974).
[CrossRef]

Lermé, J.

Leviatan, Y.

Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antenn. Propag. 36(7), 1026–1031 (1988).
[CrossRef]

Y. Leviatan, A. Boag, and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antenn. Propag. 36(12), 1722–1734 (1988).
[CrossRef]

Y. Leviatan and A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antenn. Propag. 35(10), 1119–1127 (1987).
[CrossRef]

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Li, L.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Li, X.

M. Gu and X. Li, “The road to multi-dimensional bit-by-bit optical data storage,” Opt. Photonics News 21(7), 28–33 (2010).
[CrossRef]

Li, Z.-Y.

B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Liu, M.

Liu, Z.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Luk’yanchuk, B. S.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[CrossRef]

Marhaba, S.

Martin, O. J. F.

J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O. J. F. Martin, D. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[CrossRef]

Mazilu, M.

McLellan, J.

B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

Mojarad, N. M.

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Europ. Opt. Soc. Rap. Public. 4, 09014 (2009).
[CrossRef]

Mryasov, O.

Munday, J. N.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
[CrossRef]

Narimanov, E. E.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A, Pure Appl. Opt. 7(2), S32–S37 (2005).
[CrossRef]

Nieto-Vesperinas, M.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B 73(3), 035403 (2006).
[CrossRef]

Normatov, A.

A. Normatov, B. Spektor, and J. Shamir, “The quadratic phase factor of tightly focused wavefronts,” Opt. Commun. 283(19), 3585–3590 (2010).
[CrossRef]

A. Normatov, B. Spektor, and J. Shamir, “Tight focusing of wavefronts with piecewise quasi-constant phase,” Opt. Eng. 48(2), 028001 (2009).
[CrossRef]

A. Normatov, B. Spektor, and J. Shamir, “High numerical aperture focusing of singular beams,” Proc. SPIE 7277, 727709 (2009).

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Pellarin, M.

Pelton, M.

Pesic, J.

Podolskiy, V. A.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A, Pure Appl. Opt. 7(2), S32–S37 (2005).
[CrossRef]

Reece, P. J.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II Structure of the image field in an optical system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Rockstuhl, C.

Sandoghdar, V.

M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express 18(10), 10878–10887 (2010).
[CrossRef] [PubMed]

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Europ. Opt. Soc. Rap. Public. 4, 09014 (2009).
[CrossRef]

Sarychev, A. K.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A, Pure Appl. Opt. 7(2), S32–S37 (2005).
[CrossRef]

Sburlan, S. E.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B 73(3), 035403 (2006).
[CrossRef]

Scherer, N. F.

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[CrossRef]

Sendur, K.

Shalaev, V. M.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A, Pure Appl. Opt. 7(2), S32–S37 (2005).
[CrossRef]

Shamir, J.

A. Normatov, B. Spektor, and J. Shamir, “The quadratic phase factor of tightly focused wavefronts,” Opt. Commun. 283(19), 3585–3590 (2010).
[CrossRef]

A. Normatov, B. Spektor, and J. Shamir, “Tight focusing of wavefronts with piecewise quasi-constant phase,” Opt. Eng. 48(2), 028001 (2009).
[CrossRef]

A. Normatov, B. Spektor, and J. Shamir, “High numerical aperture focusing of singular beams,” Proc. SPIE 7277, 727709 (2009).

Sheppard, C. J. R.

Siekkinen, A.

B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

Smith, D.

J. P. Kottmann, O. J. F. Martin, D. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[CrossRef]

Spektor, B.

A. Normatov, B. Spektor, and J. Shamir, “The quadratic phase factor of tightly focused wavefronts,” Opt. Commun. 283(19), 3585–3590 (2010).
[CrossRef]

A. Normatov, B. Spektor, and J. Shamir, “Tight focusing of wavefronts with piecewise quasi-constant phase,” Opt. Eng. 48(2), 028001 (2009).
[CrossRef]

A. Normatov, B. Spektor, and J. Shamir, “High numerical aperture focusing of singular beams,” Proc. SPIE 7277, 727709 (2009).

Stamnes, J. J.

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Ternovsky, V.

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[CrossRef]

Toussaint, K. C.

Wang, Z. B.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Watkins, K. G.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Whitehead, D. J.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

Wiley, B. J.

B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II Structure of the image field in an optical system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Xia, Y.

B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

Youngworth, K. S.

Zheludev, N. I.

Zumofen, G.

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Europ. Opt. Soc. Rap. Public. 4, 09014 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (2)

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

IEEE Trans. Antenn. Propag. (3)

Y. Leviatan and A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antenn. Propag. 35(10), 1119–1127 (1987).
[CrossRef]

Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antenn. Propag. 36(7), 1026–1031 (1988).
[CrossRef]

Y. Leviatan, A. Boag, and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antenn. Propag. 36(12), 1722–1734 (1988).
[CrossRef]

J. Chem. Phys. (1)

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[CrossRef] [PubMed]

J. Europ. Opt. Soc. Rap. Public. (1)

N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Europ. Opt. Soc. Rap. Public. 4, 09014 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A, Pure Appl. Opt. 7(2), S32–S37 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Phys. Chem. B (1)

B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

J. Phys. F Met. Phys. (1)

U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F Met. Phys. 4(7), 999–1014 (1974).
[CrossRef]

Opt. Commun. (1)

A. Normatov, B. Spektor, and J. Shamir, “The quadratic phase factor of tightly focused wavefronts,” Opt. Commun. 283(19), 3585–3590 (2010).
[CrossRef]

Opt. Eng. (1)

A. Normatov, B. Spektor, and J. Shamir, “Tight focusing of wavefronts with piecewise quasi-constant phase,” Opt. Eng. 48(2), 028001 (2009).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Opt. Photonics News (1)

M. Gu and X. Li, “The road to multi-dimensional bit-by-bit optical data storage,” Opt. Photonics News 21(7), 28–33 (2010).
[CrossRef]

Phys. Rev. B (3)

J. P. Kottmann, O. J. F. Martin, D. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[CrossRef]

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B 73(3), 035403 (2006).
[CrossRef]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II Structure of the image field in an optical system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Proc. SPIE (1)

A. Normatov, B. Spektor, and J. Shamir, “High numerical aperture focusing of singular beams,” Proc. SPIE 7277, 727709 (2009).

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer 2007).

M. I. Tribelsky, “Anomalous light absorption by small particles,” arXiv:0912.3644v1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical system schematic. The inset shows the electric field amplitude of the tightly focused plane wave in the xz plane.

Fig. 2
Fig. 2

The electric field in the focal area. The location (0, 0) corresponds to the geometric focal line O in Fig. 1. The amplitude of the electric field is color coded and normalized independently for the tightly focused PW (a) and the tightly focused DB (b). The electric field phasor inclination, α, is visualized by the short white lines. The positions and shapes of the contours of the nanowire cross-sections are overlaid in cyan, magenta, green and black curves. The axes x and z correspond to those in Fig. 1, axis y is normal to the figure.

Fig. 3
Fig. 3

The plot of absorption, as a function of nanowire cross-sectional shape parameters for the tightly focused PW (a), and for the tightly focused DB (b). Colors correspond to those of Fig. 2 (for additional detail see the main text).

Fig. 4
Fig. 4

The electric field (a) normalized with the same value as Fig. 2(a) and the Poynting vector (b) corresponding to the matched plate in the focused PW. The insets show (a) the zoom out at the whole waist area, (b) the zoom in on the power flow near the tip of the plate.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M = max { [ C | n ^ E ¯ i n c | d l ] / C t o t } ,
α = s i g n ( z ) tan 1 ( | E ˜ i n c , x ( x , z ) | / | E ˜ i n c , z ( x , z ) | ) .

Metrics