R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]
R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[Crossref]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[Crossref]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]
[PubMed]
T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[Crossref]
Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[Crossref]
[PubMed]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]
[PubMed]
M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref]
[PubMed]
P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
[Crossref]
C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]
P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[Crossref]
C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]
T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[Crossref]
Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[Crossref]
[PubMed]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]
H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]
T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]
[PubMed]
Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[Crossref]
[PubMed]
J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]
[PubMed]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]
[PubMed]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]
[PubMed]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]
[PubMed]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]
J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]
[PubMed]
M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
[Crossref]
Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
[Crossref]
[PubMed]
M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[Crossref]
[PubMed]
M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
[Crossref]
H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[Crossref]
[PubMed]
T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[Crossref]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[Crossref]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]
Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[Crossref]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[Crossref]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[Crossref]
Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[Crossref]
[PubMed]
T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[Crossref]
H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[Crossref]
H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[Crossref]
P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[Crossref]
C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]
[PubMed]
C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]
C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]
T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]
[PubMed]
Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[Crossref]
[PubMed]
J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]
[PubMed]
P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[Crossref]
P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
[Crossref]
H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[Crossref]
Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[Crossref]
H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[Crossref]
Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[Crossref]
P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]
R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[Crossref]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]
R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[Crossref]
Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[Crossref]
Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[Crossref]
[PubMed]
J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[Crossref]
M. Ronay, “Development of aluminum chemical mechanical planarization,” J. Electrochem. Soc. 148(9), G494–G499 (2001).
[Crossref]
H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[Crossref]
Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[Crossref]
M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
[Crossref]
M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref]
[PubMed]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
[Crossref]
Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[Crossref]
Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[Crossref]
[PubMed]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[Crossref]
Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[Crossref]
M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[Crossref]
[PubMed]
Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]
[PubMed]
C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]
J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]
[PubMed]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[Crossref]
Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[Crossref]
Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[Crossref]
[PubMed]
J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[Crossref]
Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[Crossref]
H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[Crossref]
J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[Crossref]
T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[Crossref]
Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[Crossref]
[PubMed]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]
R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[Crossref]
T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[Crossref]
J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]
J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[Crossref]
H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]
C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]
P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[Crossref]
M. Ronay, “Development of aluminum chemical mechanical planarization,” J. Electrochem. Soc. 148(9), G494–G499 (2001).
[Crossref]
S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[Crossref]
M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
[Crossref]
R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[Crossref]
[PubMed]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]
[PubMed]
Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[Crossref]
G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16(3), 2129–2140 (2008).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[Crossref]
[PubMed]
D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[Crossref]
[PubMed]
M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[Crossref]
[PubMed]
M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[Crossref]
[PubMed]
Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[Crossref]
[PubMed]
R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[Crossref]
[PubMed]
D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[Crossref]
[PubMed]
Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
[Crossref]
[PubMed]
R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35(5), 649–651 (2010).
[Crossref]
[PubMed]
Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[Crossref]
[PubMed]
N.-N. Feng and L. Dal Negro, “Plasmon mode transformation in modulated-index metal-dielectric slot waveguides,” Opt. Lett. 32(21), 3086–3088 (2007).
[Crossref]
[PubMed]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]
P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
[Crossref]
H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[Crossref]
M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref]
[PubMed]
E. Jordana, J.-M. Fedeli, L. E. Melhaoui, P. Lyan, J. P. Colonna, N. Daldosso, L. Pavesi, P. Pellegrino, B. Garrido, A. Vila, and Y. Lebour, “Deep-UV lithography fabrication of slot waveguides and sandwiched waveguides for nonlinear applications,” in Proceedings of 2007 4th IEEE International Conference on Group IV Photonics, (Institute of Electrical and Electronics Engineers, Tokyo, 2007), pp. 1–3.
E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998)
J. Homola, “Electromagnetic theory of surface plasmons,” in Surface Plasmon Resonance Based Sensors, J. Homola, ed. (Springer, Berlin, 2006).
T. Waechtler, B. Gruska, S. Zimmermann, S. E. Schulz, and T. Gessner, “Characterization of sputtered Ta and TaN films by spectroscopic ellipsometry,” in Proceedings of 8th International Conference on Solid-State and Integrated Circuit Technology, (Institute of Electrical and Electronics Engineers, Shanghai, China, 2006), pp. 2184–2186.