Abstract

We present theoretical and experimental demonstrations of the electro-optic activity in crystalline molecular thin films with octupolar D3h symmetry. Applying a longitudinal electric field modulation within the molecular plane, we analyze the induced refractive index change relative to the orientation of the octupoles in their plane, and show that a maximum value is reached when one octupolar branch lies along the direction of the modulating field. These characteristics, as well as their electric field dependence, are drastically different from more traditional one-dimensional symmetry samples, bringing additional advantages related to electro-optic coupling possibilities.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zyss, S. Brasselet, V. R. Thalladi, and G. R. Desiraju, “Octupolar versus dipolar crystalline structures for nonlinear optics: a dual crystal and propagative engineering approach,” J. Chem. Phys. 109(2), 658–669 (1998).
    [CrossRef]
  2. M. J. Lee, M. Piao, M.-Y. Jeong, S. H. Lee, S.-J. Jeon, T. G. Lim, and B. R. Cho, “Novel azo octupoles with large first hyperpolarizabilities,” J. Mater. Chem. 13, 1030–1037 (2003).
  3. V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
    [CrossRef]
  4. M.-Y. Jeong, H. M. Kim, S.-J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar films with significant second-harmonic generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
    [CrossRef]
  5. J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys. 98(9), 6583–6599 (1993).
    [CrossRef]
  6. S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B 15(1), 257–288 (1998).
    [CrossRef]
  7. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
    [CrossRef]
  8. T. Katchalski, G. Levy-Yurista, A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13(12), 4645–4650 (2005).
    [CrossRef] [PubMed]
  9. S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
    [CrossRef]
  10. A. K. Bhowmik, S. Tan, and A. C. Ahyi, “On the electro-optic measurements in organic single-crystal films,” J. Phys. D Appl. Phys. 37(23), 3330–3336 (2004).
    [CrossRef]
  11. G. F. Lipscomb, A. F. Garito, and R. S. Narang, “A large linear electro-optic effect in a polar organic crystal 2-methyl-4-nitroaniline,” Appl. Phys. Lett. 38(9), 663–665 (1981).
    [CrossRef]
  12. S. Lochran, R. T. Bailey, F. R. Cruickshank, D. Pugh, and J. N. Sherwood, “Linear electro-optic effect in the organic crystal 4-aminobenzophenone,” Appl. Opt. 36(3), 613–616 (1997).
    [CrossRef] [PubMed]
  13. M. J. Gunning and R. E. Raab, “Algebraic determination of the principal refractive indices and axes in the electro-optic effect,” Appl. Opt. 37(36), 8438–8447 (1998).
    [CrossRef]
  14. A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87(7), 3258–3262 (2000).
    [CrossRef]
  15. Will be submitted elsewhere; M.-Y. Jeong, S. Brasselet, B. R. Cho, and T.-K. Lim, “Octupolar patterned films with large second harmonic generation and electro-optical effects,” This paper include more specific results of the EO and SHG for the octupolar crystal films.
  16. H. S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, (Crc Press, Tokyo University, 1996) p. 95, Chap. 4.
  17. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymer,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
    [CrossRef]
  18. R. W. Boyd, Nonlinear Optics (Academic press, 1992) Chap. 10.

2010 (1)

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[CrossRef]

2007 (1)

M.-Y. Jeong, H. M. Kim, S.-J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar films with significant second-harmonic generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

2005 (2)

V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
[CrossRef]

T. Katchalski, G. Levy-Yurista, A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13(12), 4645–4650 (2005).
[CrossRef] [PubMed]

2004 (1)

A. K. Bhowmik, S. Tan, and A. C. Ahyi, “On the electro-optic measurements in organic single-crystal films,” J. Phys. D Appl. Phys. 37(23), 3330–3336 (2004).
[CrossRef]

2003 (1)

M. J. Lee, M. Piao, M.-Y. Jeong, S. H. Lee, S.-J. Jeon, T. G. Lim, and B. R. Cho, “Novel azo octupoles with large first hyperpolarizabilities,” J. Mater. Chem. 13, 1030–1037 (2003).

2000 (1)

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87(7), 3258–3262 (2000).
[CrossRef]

1998 (3)

1997 (2)

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

S. Lochran, R. T. Bailey, F. R. Cruickshank, D. Pugh, and J. N. Sherwood, “Linear electro-optic effect in the organic crystal 4-aminobenzophenone,” Appl. Opt. 36(3), 613–616 (1997).
[CrossRef] [PubMed]

1993 (1)

J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys. 98(9), 6583–6599 (1993).
[CrossRef]

1990 (1)

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymer,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[CrossRef]

1981 (1)

G. F. Lipscomb, A. F. Garito, and R. S. Narang, “A large linear electro-optic effect in a polar organic crystal 2-methyl-4-nitroaniline,” Appl. Phys. Lett. 38(9), 663–665 (1981).
[CrossRef]

Ahyi, A. C.

A. K. Bhowmik, S. Tan, and A. C. Ahyi, “On the electro-optic measurements in organic single-crystal films,” J. Phys. D Appl. Phys. 37(23), 3330–3336 (2004).
[CrossRef]

Bailey, R. T.

Bhowmik, A. K.

A. K. Bhowmik, S. Tan, and A. C. Ahyi, “On the electro-optic measurements in organic single-crystal films,” J. Phys. D Appl. Phys. 37(23), 3330–3336 (2004).
[CrossRef]

Brasselet, S.

M.-Y. Jeong, H. M. Kim, S.-J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar films with significant second-harmonic generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
[CrossRef]

J. Zyss, S. Brasselet, V. R. Thalladi, and G. R. Desiraju, “Octupolar versus dipolar crystalline structures for nonlinear optics: a dual crystal and propagative engineering approach,” J. Chem. Phys. 109(2), 658–669 (1998).
[CrossRef]

S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B 15(1), 257–288 (1998).
[CrossRef]

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Cho, B. R.

M.-Y. Jeong, H. M. Kim, S.-J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar films with significant second-harmonic generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
[CrossRef]

M. J. Lee, M. Piao, M.-Y. Jeong, S. H. Lee, S.-J. Jeon, T. G. Lim, and B. R. Cho, “Novel azo octupoles with large first hyperpolarizabilities,” J. Mater. Chem. 13, 1030–1037 (2003).

Cho, M.

V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
[CrossRef]

Cruickshank, F. R.

Dalton, L. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Desiraju, G. R.

J. Zyss, S. Brasselet, V. R. Thalladi, and G. R. Desiraju, “Octupolar versus dipolar crystalline structures for nonlinear optics: a dual crystal and propagative engineering approach,” J. Chem. Phys. 109(2), 658–669 (1998).
[CrossRef]

Donval, A.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87(7), 3258–3262 (2000).
[CrossRef]

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Friesem, A.

Garito, A. F.

G. F. Lipscomb, A. F. Garito, and R. S. Narang, “A large linear electro-optic effect in a polar organic crystal 2-methyl-4-nitroaniline,” Appl. Phys. Lett. 38(9), 663–665 (1981).
[CrossRef]

Gunning, M. J.

Hau, S. K.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[CrossRef]

Hierle, R.

Huang, S.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[CrossRef]

Jen, A. K.-Y.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[CrossRef]

Jeon, S.-J.

M.-Y. Jeong, H. M. Kim, S.-J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar films with significant second-harmonic generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
[CrossRef]

M. J. Lee, M. Piao, M.-Y. Jeong, S. H. Lee, S.-J. Jeon, T. G. Lim, and B. R. Cho, “Novel azo octupoles with large first hyperpolarizabilities,” J. Mater. Chem. 13, 1030–1037 (2003).

Jeong, M.-Y.

M.-Y. Jeong, H. M. Kim, S.-J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar films with significant second-harmonic generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

M. J. Lee, M. Piao, M.-Y. Jeong, S. H. Lee, S.-J. Jeon, T. G. Lim, and B. R. Cho, “Novel azo octupoles with large first hyperpolarizabilities,” J. Mater. Chem. 13, 1030–1037 (2003).

Katchalski, T.

Kim, H. M.

M.-Y. Jeong, H. M. Kim, S.-J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar films with significant second-harmonic generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

Kim, T.-D.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[CrossRef]

Le Floc’h, V.

V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
[CrossRef]

Lee, M. J.

M. J. Lee, M. Piao, M.-Y. Jeong, S. H. Lee, S.-J. Jeon, T. G. Lim, and B. R. Cho, “Novel azo octupoles with large first hyperpolarizabilities,” J. Mater. Chem. 13, 1030–1037 (2003).

Lee, S. H.

V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
[CrossRef]

M. J. Lee, M. Piao, M.-Y. Jeong, S. H. Lee, S.-J. Jeon, T. G. Lim, and B. R. Cho, “Novel azo octupoles with large first hyperpolarizabilities,” J. Mater. Chem. 13, 1030–1037 (2003).

Levy-Yurista, G.

Lim, T. G.

M. J. Lee, M. Piao, M.-Y. Jeong, S. H. Lee, S.-J. Jeon, T. G. Lim, and B. R. Cho, “Novel azo octupoles with large first hyperpolarizabilities,” J. Mater. Chem. 13, 1030–1037 (2003).

Lipscomb, G. F.

G. F. Lipscomb, A. F. Garito, and R. S. Narang, “A large linear electro-optic effect in a polar organic crystal 2-methyl-4-nitroaniline,” Appl. Phys. Lett. 38(9), 663–665 (1981).
[CrossRef]

Lochran, S.

Luo, J.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[CrossRef]

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymer,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[CrossRef]

Martin, G.

Min, K. S.

V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
[CrossRef]

Narang, R. S.

G. F. Lipscomb, A. F. Garito, and R. S. Narang, “A large linear electro-optic effect in a polar organic crystal 2-methyl-4-nitroaniline,” Appl. Phys. Lett. 38(9), 663–665 (1981).
[CrossRef]

Piao, M.

M. J. Lee, M. Piao, M.-Y. Jeong, S. H. Lee, S.-J. Jeon, T. G. Lim, and B. R. Cho, “Novel azo octupoles with large first hyperpolarizabilities,” J. Mater. Chem. 13, 1030–1037 (2003).

Pugh, D.

Raab, R. E.

Sherwood, J. N.

Shi, Y.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Shi, Z.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[CrossRef]

Steier, W. H.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Suh, M. P.

V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
[CrossRef]

Tan, S.

A. K. Bhowmik, S. Tan, and A. C. Ahyi, “On the electro-optic measurements in organic single-crystal films,” J. Phys. D Appl. Phys. 37(23), 3330–3336 (2004).
[CrossRef]

Teng, C. C.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymer,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[CrossRef]

Thalladi, V. R.

J. Zyss, S. Brasselet, V. R. Thalladi, and G. R. Desiraju, “Octupolar versus dipolar crystalline structures for nonlinear optics: a dual crystal and propagative engineering approach,” J. Chem. Phys. 109(2), 658–669 (1998).
[CrossRef]

Toussaere, E.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87(7), 3258–3262 (2000).
[CrossRef]

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Yip, H.-L.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[CrossRef]

Zhou, X.-H.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[CrossRef]

Zyss, J.

T. Katchalski, G. Levy-Yurista, A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13(12), 4645–4650 (2005).
[CrossRef] [PubMed]

V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
[CrossRef]

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87(7), 3258–3262 (2000).
[CrossRef]

J. Zyss, S. Brasselet, V. R. Thalladi, and G. R. Desiraju, “Octupolar versus dipolar crystalline structures for nonlinear optics: a dual crystal and propagative engineering approach,” J. Chem. Phys. 109(2), 658–669 (1998).
[CrossRef]

S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B 15(1), 257–288 (1998).
[CrossRef]

J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys. 98(9), 6583–6599 (1993).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (2)

V. Le Floc’h, S. Brasselet, J. Zyss, B. R. Cho, S. H. Lee, S.-J. Jeon, M. Cho, K. S. Min, and M. P. Suh, “High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy,” Adv. Mater. (Deerfield Beach Fla.) 17(2), 196–200 (2005).
[CrossRef]

M.-Y. Jeong, H. M. Kim, S.-J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar films with significant second-harmonic generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[CrossRef]

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymer,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

G. F. Lipscomb, A. F. Garito, and R. S. Narang, “A large linear electro-optic effect in a polar organic crystal 2-methyl-4-nitroaniline,” Appl. Phys. Lett. 38(9), 663–665 (1981).
[CrossRef]

J. Appl. Phys. (1)

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87(7), 3258–3262 (2000).
[CrossRef]

J. Chem. Phys. (2)

J. Zyss, S. Brasselet, V. R. Thalladi, and G. R. Desiraju, “Octupolar versus dipolar crystalline structures for nonlinear optics: a dual crystal and propagative engineering approach,” J. Chem. Phys. 109(2), 658–669 (1998).
[CrossRef]

J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys. 98(9), 6583–6599 (1993).
[CrossRef]

J. Mater. Chem. (1)

M. J. Lee, M. Piao, M.-Y. Jeong, S. H. Lee, S.-J. Jeon, T. G. Lim, and B. R. Cho, “Novel azo octupoles with large first hyperpolarizabilities,” J. Mater. Chem. 13, 1030–1037 (2003).

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

A. K. Bhowmik, S. Tan, and A. C. Ahyi, “On the electro-optic measurements in organic single-crystal films,” J. Phys. D Appl. Phys. 37(23), 3330–3336 (2004).
[CrossRef]

Opt. Express (1)

Other (3)

R. W. Boyd, Nonlinear Optics (Academic press, 1992) Chap. 10.

Will be submitted elsewhere; M.-Y. Jeong, S. Brasselet, B. R. Cho, and T.-K. Lim, “Octupolar patterned films with large second harmonic generation and electro-optical effects,” This paper include more specific results of the EO and SHG for the octupolar crystal films.

H. S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, (Crc Press, Tokyo University, 1996) p. 95, Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic drawing of a TTB molecule (3 branches) and its orientation by the Euler angles (θ,ϕ,ψ). The molecular coordinates are denoted ( U 1 , U 2 , U 3 ) in the laboratory coordinate (X,Y,Z). The (x,y,z) notations are used as intermediate axes to define the orientation of the ( U 1 , U 2 ) molecular plane in the laboratory frame. (b) Geometry of the electro-optic modulation in the octupolar thin film. (c) Euler angles used in this geometry: the octupolar plane is defined by (θ = π/2, ϕ = 0), and ψ defines the octupoles orientation in the (Y,Z) plane. (d) The molecular structure of TTB.

Fig. 2
Fig. 2

Principal axes of the index ellipsoid ( U 1 ,   U 2 ) in the absence of an applied field and principal axes intersection of the index ellipsoid ( U 1 ' ,   U 2 ' ) in the presence of an applied field along the direction Z. The angles Θ, ψ and α are described in the text.

Fig. 3
Fig. 3

Calculated ψ-dependence of n Y ( ψ ) and | Δ n Y ( ψ ) | supposing n o = 1.5 and r 11 E m = 0.01 . The corresponding orientations of the octupolar molecules in their plane are given for situations giving a maximum or minimum index change (k is an integer).

Fig. 4
Fig. 4

Transverse (a) and longitudinal (b) electro-optic modulation geometries in 1D molecular systems. The angles and direction notations are the same as used for the octupolar systems.

Fig. 5
Fig. 5

(a) X-rd measurement. (b) The birefringence measurement of the cylinder TTB crystal, performed by measuring the transmission of a TTB sample region of 1mm size between two crossed polarizers rotating simultaneously (the polar angle in the polar graph is the polarizers rotation angle).

Fig. 6
Fig. 6

Experimental electro-optic effect in a TTB thin crystalline film. (a) Setup. P: linear polarizer, λ / 2 : half wave plate, S: crystal sample, λ / 4 : quarter waver plate, A: analyzer. (b) Measured modulated light intensity vs. input beam polarization angle (dots) and theoretical fit to Eq. (12) (continuous line). (c) Modulated light intensity (dots) vs. fast axis angle of λ / 4 plate. The continuous line is the theoretical fit to Eq. (13). The experimental and fit curves are normalized to their maximum. The data of (b) and (c) were measured at a fixed applied electric field modulation of 61 V P P at 4 kHz.

Fig. 7
Fig. 7

Experimental electro-optic responses in a TTB thin crystalline film. (a) Theoretical Iout(Vm) dependence, assuming the parameters L = 1 μ m , n o = 1.5825 , n e = 1.59 , r 11 = 300 p m / V ( ψ = 0 ° curve) and r 11 = 1100 p m / V ( ψ = 90 ° curve), λ = 633 n m . (b,c) Experimental Iexp(Vm) dependence measured on the modulation intensity for two different samples and the data of Fig. 7(b) and 7(c) were renormalized with maximum value.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

( 1 n o 2 r 11 E m cos ψ ) U 1 2 + ( 1 n o 2 + r 11 E m cos ψ ) U 2 2 2 r 11 E m sin ψ U 1 U 2 + U 3 2 n e 2 = 1
[ U 1 U 2 ] M [ U 1 U 2 ]   = 1,   with   M =    [ ( 1 n o 2 A )               -B         -B                ( 1 n o 2 + A ) ]  
[ U ' 1 U ' 2 ] [ μ 1 0 0 μ 2 ] [ U ' 1 U ' 2 ]   = 1   or   U 1 ' 2 n 1 ' + U 2 ' 2 n 2 ' + U 3 ' 2 n 3 ' = 1 with   1 n ' 1 2 = 1 n o 2 r 11 E m   and   1 n ' 2 2 = 1 n o 2 + r 11 E m
( U ' 1 U ' 2 ) = ( cos Θ sin Θ sin Θ cos Θ ) ( U 1 U 2 )   and   Θ   = ψ 2
n ' 1 = n o + 1 2 r 11 E m n o 3   and   n ' 2 = n o 1 2 r 11 E m n o 3
cos α 2 ( n o + 1 2 r 11 E m n o 3 ) 2 + sin α 2 ( n o 1 2 r 11 E m n o 3 ) 2 = 1 n 2 ( α )
n ( α ) = n o 2 n m 2 ( n o n m ) 2 cos α 2 + ( n o + n m ) 2 sin α 2
n Y ( ψ ) = n o 2 n m 2 ( n o n m ) 2 sin ( 3 ψ 2 ) 2 + ( n o + n m ) 2 cos ( 3 ψ 2 ) 2
Γ max = Γ ( ψ = k π / 3 ) = 2 π λ | n e ( n o n m ) | L
( 1 n e 2 + r 11 E m cos ψ ) U 1 2 + 1 n o 2 U 2 2 = 1
n Y = n ( α = π 2 ψ ) = n 1 ( ψ ) n o n o 2 sin ψ 2 + n 1 2 ( ψ ) cos ψ 2
E o u t = [ sin β 2 cos β sin β sin β cos β cos β 2 ] [ e i Γ T 2 0 0 e i Γ T 2 ] E i n [ cos β sin β ]   I o u t = E o u t E o u t * = 2 I i n sin β 2 cos β 2 ( 1 + sin Γ )
E o u t = 1 2 [ 1 1 1 1 ] 1 2 [ 1 + i ( sin γ 2 cos γ 2 ) 2 i sin γ cos γ 2 i sin γ cos γ 1 i ( sin γ 2 cos γ 2 ) ] [ e i Γ 2 0 0 e i Γ 2 ] E i n 1 2 [ 1 1 ]   I o u t = I i n [ 1 2 [ sin Γ 2 + cos Γ 2 ( sin γ 2 cos γ 2 ) ] 2 + 2 sin Γ 2 2 sin γ 2 cos γ 2 ]
I o u t ( E m ,   ψ ) = I i n 1 2 [ 1 + sin Γ ( E m ,   ψ ) ]

Metrics