Abstract

We report an observation of the self- and external-dressed Autler-Townes (AT) splitting in six-wave mixing (SWM) within an electromagnetically induce transparency window, which demonstrates the interaction between two coexisting SWM processes. The multi-dressed states induced by the nested interactions between many dressing fields and the five-level atomic system lead to the primary, secondary and triple AT splittings in the experiment. Such controlled multi-channel splitting of nonlinear optical signals can be used in a range of applications, e.g. the wavelength-demultiplexer in optical communication and quantum information processing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
    [CrossRef]
  2. W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49(6), 4895–4901 (1994).
    [CrossRef] [PubMed]
  3. J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
    [CrossRef]
  4. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett. 89(12), 127401 (2002).
    [CrossRef] [PubMed]
  5. C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in Rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98(2), 023002 (2007).
    [CrossRef] [PubMed]
  6. T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, “Evidence of antiblockade in an ultracold Rydberg gas,” Phys. Rev. Lett. 104(1), 013001 (2010).
    [CrossRef] [PubMed]
  7. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
    [CrossRef]
  8. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [CrossRef] [PubMed]
  9. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency-observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
    [CrossRef] [PubMed]
  10. S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58(3), 2500–2505 (1998).
    [CrossRef]
  11. Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
    [CrossRef] [PubMed]
  12. Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
    [CrossRef] [PubMed]
  13. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
    [CrossRef]
  14. M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
    [CrossRef]
  15. R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
    [CrossRef]
  16. G. Wasik, W. Gawlik, J. Zachorowski, and Z. Kowal, “Competition of dark states: Optical resonances with anomalous magnetic field dependence,” Phys. Rev. A 64(5), 051802 (2001).
    [CrossRef]
  17. Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010).
    [CrossRef] [PubMed]
  18. K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009).
    [CrossRef] [PubMed]
  19. R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
    [CrossRef]
  20. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
    [CrossRef] [PubMed]

2010 (2)

T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, “Evidence of antiblockade in an ultracold Rydberg gas,” Phys. Rev. Lett. 104(1), 013001 (2010).
[CrossRef] [PubMed]

Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010).
[CrossRef] [PubMed]

2009 (3)

K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009).
[CrossRef] [PubMed]

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[CrossRef]

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
[CrossRef]

2008 (1)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in Rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98(2), 023002 (2007).
[CrossRef] [PubMed]

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[CrossRef] [PubMed]

2006 (1)

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

2002 (1)

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett. 89(12), 127401 (2002).
[CrossRef] [PubMed]

2001 (2)

G. Wasik, W. Gawlik, J. Zachorowski, and Z. Kowal, “Competition of dark states: Optical resonances with anomalous magnetic field dependence,” Phys. Rev. A 64(5), 051802 (2001).
[CrossRef]

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

1999 (2)

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

1998 (1)

S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58(3), 2500–2505 (1998).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

1995 (2)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency-observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

1994 (1)

W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49(6), 4895–4901 (1994).
[CrossRef] [PubMed]

1955 (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Amthor, T.

T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, “Evidence of antiblockade in an ultracold Rydberg gas,” Phys. Rev. Lett. 104(1), 013001 (2010).
[CrossRef] [PubMed]

Ates, C.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in Rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98(2), 023002 (2007).
[CrossRef] [PubMed]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Boyd, R. W.

K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009).
[CrossRef] [PubMed]

Boyer, V.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Brown, A. W.

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[CrossRef] [PubMed]

Camacho, R. M.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[CrossRef]

Chalupczak, W.

W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49(6), 4895–4901 (1994).
[CrossRef] [PubMed]

Dolgaleva, K.

K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009).
[CrossRef] [PubMed]

Drampyan, R.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
[CrossRef]

Dunn, M. H.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency-observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

Fleischhauer, M.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Fu, G. S.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Fu, P. M.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Fulton, D. J.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency-observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

Gaeta, A. L.

S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58(3), 2500–2505 (1998).
[CrossRef]

Gawlik, W.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
[CrossRef]

G. Wasik, W. Gawlik, J. Zachorowski, and Z. Kowal, “Competition of dark states: Optical resonances with anomalous magnetic field dependence,” Phys. Rev. A 64(5), 051802 (2001).
[CrossRef]

W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49(6), 4895–4901 (1994).
[CrossRef] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Giese, C.

T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, “Evidence of antiblockade in an ultracold Rydberg gas,” Phys. Rev. Lett. 104(1), 013001 (2010).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

Hofmann, C. S.

T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, “Evidence of antiblockade in an ultracold Rydberg gas,” Phys. Rev. Lett. 104(1), 013001 (2010).
[CrossRef] [PubMed]

Howell, J. C.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[CrossRef]

Jiang, Q.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Kärtner, F. X.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett. 89(12), 127401 (2002).
[CrossRef] [PubMed]

Kowal, Z.

G. Wasik, W. Gawlik, J. Zachorowski, and Z. Kowal, “Competition of dark states: Optical resonances with anomalous magnetic field dependence,” Phys. Rev. A 64(5), 051802 (2001).
[CrossRef]

Lazarov, G.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[CrossRef]

Lett, P. D.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Li, C. B.

Li, L.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[CrossRef]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Liu, X.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Lukin, M. D.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Lyyra, A. M.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[CrossRef]

Marino, A. M.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Morgner, U.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett. 89(12), 127401 (2002).
[CrossRef] [PubMed]

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency-observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

Mücke, O. D.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett. 89(12), 127401 (2002).
[CrossRef] [PubMed]

Narducci, L. M.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[CrossRef]

Nie, Z. Q.

Pattard, T.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in Rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98(2), 023002 (2007).
[CrossRef] [PubMed]

Pohl, T.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in Rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98(2), 023002 (2007).
[CrossRef] [PubMed]

Pooser, R. C.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Pustelny, S.

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
[CrossRef]

Qi, J. B.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[CrossRef]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

Rost, J. M.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in Rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98(2), 023002 (2007).
[CrossRef] [PubMed]

Scully, M. O.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency-observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

Shin, H.

K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009).
[CrossRef] [PubMed]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency-observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

Spano, F. C.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[CrossRef]

Sun, J.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Tritschler, T.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett. 89(12), 127401 (2002).
[CrossRef] [PubMed]

Vudyasetu, P. K.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[CrossRef]

Wang, X. J.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[CrossRef]

Wang, Z. G.

Wasik, G.

G. Wasik, W. Gawlik, J. Zachorowski, and Z. Kowal, “Competition of dark states: Optical resonances with anomalous magnetic field dependence,” Phys. Rev. A 64(5), 051802 (2001).
[CrossRef]

Wegener, M.

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett. 89(12), 127401 (2002).
[CrossRef] [PubMed]

Weidemüller, M.

T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, “Evidence of antiblockade in an ultracold Rydberg gas,” Phys. Rev. Lett. 104(1), 013001 (2010).
[CrossRef] [PubMed]

Wen, F.

Wielandy, S.

S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58(3), 2500–2505 (1998).
[CrossRef]

Wu, L. A.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Xiao, M.

Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010).
[CrossRef] [PubMed]

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Yan, M.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

Yelin, S. F.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Zachorowski, J.

G. Wasik, W. Gawlik, J. Zachorowski, and Z. Kowal, “Competition of dark states: Optical resonances with anomalous magnetic field dependence,” Phys. Rev. A 64(5), 051802 (2001).
[CrossRef]

W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49(6), 4895–4901 (1994).
[CrossRef] [PubMed]

Zhang, Y. P.

Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler-Townes splitting in high-order nonlinear processes,” Opt. Lett. 35(20), 3420–3422 (2010).
[CrossRef] [PubMed]

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[CrossRef] [PubMed]

Zhu, Y. F.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

Zuo, Z. C.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Phys. Rev. A (6)

W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49(6), 4895–4901 (1994).
[CrossRef] [PubMed]

S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58(3), 2500–2505 (1998).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64(1), 013412 (2001).
[CrossRef]

R. Drampyan, S. Pustelny, and W. Gawlik, “Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization,” Phys. Rev. A 80(3), 033815 (2009).
[CrossRef]

G. Wasik, W. Gawlik, J. Zachorowski, and Z. Kowal, “Competition of dark states: Optical resonances with anomalous magnetic field dependence,” Phys. Rev. A 64(5), 051802 (2001).
[CrossRef]

Phys. Rev. Lett. (9)

K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103(11), 113902 (2009).
[CrossRef] [PubMed]

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[CrossRef] [PubMed]

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97(19), 193904 (2006).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency-observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[CrossRef]

O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett. 89(12), 127401 (2002).
[CrossRef] [PubMed]

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in Rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98(2), 023002 (2007).
[CrossRef] [PubMed]

T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, “Evidence of antiblockade in an ultracold Rydberg gas,” Phys. Rev. Lett. 104(1), 013001 (2010).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

Science (1)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Phase-matching spatial beam geometry used in the experiment. (b) Five-level atomic system with one probe field , two pump fields E 3 and E 3 , and two coupling (dressing) fields E 2 and E 4 . E F is the generated FWM signal. E S 1 and E S 2 are the two generated SWM signals. (c)-(e) Corresponding dressed-state pictures of (b).

Fig. 2
Fig. 2

(a1), (b1) and (c1) are the measured SWM1 self-dressing AT splitting signals versus Δ 1 for Δ 2 = 50 MHz under different P 1 , P 2 and P 3 powers, respectively. (a1) is increasing P 1 = 0.30, 0.36, 0.43, 0.90, 1.37, 1.85, 2.32, 3.66, 5.33, 8.18, 10.3, 13.61, 15.46, 22.5, 24.2, 25.3, 28.8 and 29.5mW from bottom to top. (b1) is increasing P 2 = 0.3, 0.6, 0.9, 1.2, 1.5, 2.1, 4.5, 7.5, 12.5, 17.2, 25.5 and 31.4mW from bottom to top. (c1) is increasing P 3 = 1.8, 3.9, 6.3, 7.7, 11.4, 16.7, 22.2, 33.1 and 52.2mW from bottom to top. (a2), (b2) and (c2) are the corresponding power dependences of (a1), (b1) and (c1), respectively. Here Δ a , Δ b and Δ c are the increments of distance between the two A-T splitting peaks when P 1 , P 2 and P 3 are increased, respectively, and the squares are the experimental results, while the solid lines in (a2, b2, c2) are the theoretical calculations. The fixed powers in (a1,2), (b1,2) and (c1,2) are ( P 2 = 32.0mW & P 3 = 55.0mW), ( P 1 = 13.0mW & P 3 = 55.0mW), and ( P 1 = 13.0mW & P 2 = 32.0 mW), respectively.

Fig. 4
Fig. 4

Measured SWM1 moving towards SWM2 signal (lower-curves) and the corresponding EIT (upper-curves) versus Δ 1 for Δ 4 = 0 , Δ 2 = 150 (a1), Δ 2 = 15 (a2), Δ 2 = 15 MHz (a3). (b3) is the SWM1 signal splitting the right peak of the SWM2 signal versus Δ 1 for increasing , 2.5, 3.5, 4.5, 5.5 and 6.5 mW from bottom to top when P 1 =6 .5mW , P 3 =38 .5mW and P 4 =22 .6mW . (b5) is the SWM1 splitting the left peak of SWM2 signals versus Δ 1 under the same power of (b3). (b1) is the double-peaked SWM1 signals versus Δ 1 with Δ 2 = 150 M H z . (b2), (b4) and (b6) are the corresponding power dependences. Here Δ b1 , Δ b3 and Δ b5 are the increments of the distances between the two large peaks in (b1), right two peaks in (b3), left two peaks in (b5), respectively, when P 2 is increased, and the squares are the experimental results, while the solid lines in (b2, b4, b6) are the theoretical calculations.

Fig. 3
Fig. 3

(a) is the measured EIT2 induced by the field E 4 versus Δ 1 . (b1), (c1) and (d1) are the measured SWM2 self-dressing AT splitting signals versus Δ 1 for Δ 4 = 0 under different P 1 , P 3 and P 4 powers, respectively. (b1) is increasing P 1 =0 .4 , 0.9, 1.4, 1.8, 3.7, 5.3, 9.3, 10.3, 13.6, 15.5, 24.7 and 29.5 mW from bottom to top. (c1) is increasing P 3 = 1.2 , 1.4, 2.9, 4.6, 6.6, 8.2, 9.5 and 27.2 mW from bottom to top. (d1) is increasing P 4 = 0.12, 0.48, 0.6, 1.36, 2.47, 3.1, 5.4, 7.7, 14.0, 23.0, 39.0, 71.0, 116.0, 142.0, 184.0, 205.0, 225.0, 242.0 and 258.0 mW from bottom to top. (b2), (c2) and (d2) are the corresponding power dependences of (b1), (c1) and (d1), respectively. Here Δ b , Δ c and Δ d are the increments of the distance between the right (for Δ b and Δ c ) or left (for Δ d ) two A-T splitting peaks, respectively, when P 1 , P 3 and P 4 are increased, respectively, and the squares are the experimental results, while the solid lines in (b2, c2, d2) are the theoretical calculations. The fixed powers in (b1, 2), (c1, 2) and (d1, 2) are ( P 3 = 30.0mW & P 4 = 150.0mW), ( P 1 = 1.0 mW & P 4 = 150.0mW), and ( P 1 = 1.0 mW & P 3 = 30.0mW), respectively.

Metrics