Abstract

We report that a three-dimensional quasiordered photonic structure, found in the cuticles of beetle H. sexmaculata, can diffract light in a “wrong” way and its angular dispersion is about one order of magnitude larger than that of a conventional diffraction grating. A new diffraction type of photonic bandgap (from an anticrossing of longitudinal and transverse modes) and additional disorder effect are found to play important roles in this phenomenon. Mimicking the structure could lead to novel optical devices with ultralarge angular dispersion.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  2. M. Srinivasarao, “Nano-optics in the biological world: Beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
    [CrossRef]
  3. R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
    [CrossRef]
  4. A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
    [CrossRef] [PubMed]
  5. J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
    [CrossRef] [PubMed]
  6. A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).
  7. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15(7), 4351–4358 (2007).
    [CrossRef] [PubMed]
  8. V. Welch, V. Lousse, O. Deparis, A. Parker, and J. P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041919 (2007).
    [CrossRef] [PubMed]
  9. J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E 77, 050904(R) (2008).
    [CrossRef]
  10. P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
    [CrossRef] [PubMed]
  11. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
    [CrossRef] [PubMed]
  12. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Now you see it - now you dont,” Nature 410(6824), 36 (2001).
    [CrossRef] [PubMed]
  13. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
    [CrossRef] [PubMed]
  14. F. Liu, H. Yin, B. Dong, Y. Qing, L. Zhao, S. Meyer, X. Liu, J. Zi, and B. Chen, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 012901 (2008).
    [CrossRef] [PubMed]
  15. H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover, “Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators,” Science 323(5910), 130–133 (2009).
    [CrossRef] [PubMed]
  16. H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
    [CrossRef]
  17. A. R. Parker and Z. Hegedus, “Diffractive optics in spiders,” J. Opt. A, Pure Appl. Opt. 5(4), S111–S116 (2003).
    [CrossRef]
  18. M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” N. J. Phys. 10(3), 033014 (2008).
    [CrossRef]
  19. F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009).
    [CrossRef] [PubMed]
  20. R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
    [CrossRef]
  21. N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
    [CrossRef]
  22. M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
    [CrossRef] [PubMed]
  23. H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
    [CrossRef]
  24. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, England, 1999).
  25. E. G. Loewen and E. Popov, Diffraction gratings and applications (Marcel Dekker, New York, 1997).
  26. B. Q. Dong, X. H. Liu, T. R. Zhan, L. P. Jiang, H. W. Yin, F. Liu, and J. Zi, “Structural coloration and photonic pseudogap in natural random close-packing photonic structures,” Opt. Express 18(14), 14430–14438 (2010).
    [CrossRef] [PubMed]
  27. K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
    [CrossRef] [PubMed]
  28. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
    [CrossRef] [PubMed]
  29. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  30. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  31. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, NJ, 2008).
  32. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
    [CrossRef] [PubMed]
  33. Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
    [CrossRef]
  34. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [CrossRef]
  35. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
    [CrossRef]

2010 (4)

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

B. Q. Dong, X. H. Liu, T. R. Zhan, L. P. Jiang, H. W. Yin, F. Liu, and J. Zi, “Structural coloration and photonic pseudogap in natural random close-packing photonic structures,” Opt. Express 18(14), 14430–14438 (2010).
[CrossRef] [PubMed]

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

2009 (5)

H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009).
[CrossRef] [PubMed]

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover, “Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators,” Science 323(5910), 130–133 (2009).
[CrossRef] [PubMed]

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

2008 (4)

F. Liu, H. Yin, B. Dong, Y. Qing, L. Zhao, S. Meyer, X. Liu, J. Zi, and B. Chen, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 012901 (2008).
[CrossRef] [PubMed]

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E 77, 050904(R) (2008).
[CrossRef]

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” N. J. Phys. 10(3), 033014 (2008).
[CrossRef]

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
[CrossRef] [PubMed]

2007 (3)

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[CrossRef]

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15(7), 4351–4358 (2007).
[CrossRef] [PubMed]

V. Welch, V. Lousse, O. Deparis, A. Parker, and J. P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041919 (2007).
[CrossRef] [PubMed]

2003 (4)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

A. R. Parker and Z. Hegedus, “Diffractive optics in spiders,” J. Opt. A, Pure Appl. Opt. 5(4), S111–S116 (2003).
[CrossRef]

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

2001 (2)

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Now you see it - now you dont,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

2000 (1)

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[CrossRef] [PubMed]

1999 (2)

M. Srinivasarao, “Nano-optics in the biological world: Beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

1998 (3)

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[CrossRef]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Andrew, P.

H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover, “Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators,” Science 323(5910), 130–133 (2009).
[CrossRef] [PubMed]

Bartl, M. H.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E 77, 050904(R) (2008).
[CrossRef]

Baumberg, J. J.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Botten, L. C.

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

Cao, H.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Cha, J. N.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E 77, 050904(R) (2008).
[CrossRef]

Chan, C. T.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Chan, Y. S.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Chen, B.

F. Liu, H. Yin, B. Dong, Y. Qing, L. Zhao, S. Meyer, X. Liu, J. Zi, and B. Chen, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 012901 (2008).
[CrossRef] [PubMed]

Chiou, T. H.

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

Chittka, L.

H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover, “Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators,” Science 323(5910), 130–133 (2009).
[CrossRef] [PubMed]

Choi, S. E.

H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Colomer, J. F.

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” N. J. Phys. 10(3), 033014 (2008).
[CrossRef]

Cournoyer, J. R.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[CrossRef]

Crne, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Cronin, T. W.

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

Deparis, O.

V. Welch, V. Lousse, O. Deparis, A. Parker, and J. P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041919 (2007).
[CrossRef] [PubMed]

Dong, B.

F. Liu, H. Yin, B. Dong, Y. Qing, L. Zhao, S. Meyer, X. Liu, J. Zi, and B. Chen, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 012901 (2008).
[CrossRef] [PubMed]

Dong, B. Q.

Dovidenko, K.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[CrossRef]

Dufresne, E. R.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Dyck, J.

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

Edagawa, K.

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
[CrossRef] [PubMed]

Fu, R.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Galusha, J. W.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E 77, 050904(R) (2008).
[CrossRef]

Gardner, J. S.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E 77, 050904(R) (2008).
[CrossRef]

Ge, J.

H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Ghiradella, H.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[CrossRef]

Glover, B. J.

H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover, “Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators,” Science 323(5910), 130–133 (2009).
[CrossRef] [PubMed]

Hegedus, Z.

A. R. Parker and Z. Hegedus, “Diffractive optics in spiders,” J. Opt. A, Pure Appl. Opt. 5(4), S111–S116 (2003).
[CrossRef]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Hooper, I. R.

Hu, X.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Huang, F.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Jiang, L. P.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kanoko, S.

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
[CrossRef] [PubMed]

Kawagoe, K.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Kim, H.

H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Kim, J.

H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Kinoshita, S.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Kolle, M.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover, “Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators,” Science 323(5910), 130–133 (2009).
[CrossRef] [PubMed]

Kwon, S.

H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Large, M. C. J.

A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Now you see it - now you dont,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[CrossRef] [PubMed]

Lee, H.

H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Li, Y.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Li, Z. Y.

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

Liew, S. F.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Lin, L. L.

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

Liu, F.

Liu, X.

F. Liu, H. Yin, B. Dong, Y. Qing, L. Zhao, S. Meyer, X. Liu, J. Zi, and B. Chen, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 012901 (2008).
[CrossRef] [PubMed]

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Liu, X. H.

Liu, Z. Y.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[CrossRef]

Lousse, V.

V. Welch, V. Lousse, O. Deparis, A. Parker, and J. P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041919 (2007).
[CrossRef] [PubMed]

Mahajan, S.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Marshall, N. J.

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

McKenzie, D. R.

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

McPhedran, R. C.

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

Meyer, S.

F. Liu, H. Yin, B. Dong, Y. Qing, L. Zhao, S. Meyer, X. Liu, J. Zi, and B. Chen, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 012901 (2008).
[CrossRef] [PubMed]

Mochrie, S. G. J.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Nicorovici, N. A.

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

Noh, H.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Notomi, M.

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
[CrossRef] [PubMed]

Noyes, J. A.

Olson, E.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[CrossRef]

Park, J. O.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Park, W.

H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Parker, A.

V. Welch, V. Lousse, O. Deparis, A. Parker, and J. P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041919 (2007).
[CrossRef] [PubMed]

Parker, A. R.

A. R. Parker and Z. Hegedus, “Diffractive optics in spiders,” J. Opt. A, Pure Appl. Opt. 5(4), S111–S116 (2003).
[CrossRef]

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

Potyrailo, R. A.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[CrossRef]

Prum, R. O.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

Qing, Y.

F. Liu, H. Yin, B. Dong, Y. Qing, L. Zhao, S. Meyer, X. Liu, J. Zi, and B. Chen, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 012901 (2008).
[CrossRef] [PubMed]

Rassart, M.

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” N. J. Phys. 10(3), 033014 (2008).
[CrossRef]

Richey, L. R.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E 77, 050904(R) (2008).
[CrossRef]

Roberts, N. W.

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

Salgard-Cunha, P. M.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Now you see it - now you dont,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[CrossRef] [PubMed]

Saranathan, V.

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Scherer, M. R. J.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Sharma, V.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Srinivasarao, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

M. Srinivasarao, “Nano-optics in the biological world: Beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef]

Steiner, U.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover, “Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators,” Science 323(5910), 130–133 (2009).
[CrossRef] [PubMed]

Tabarrant, T.

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” N. J. Phys. 10(3), 033014 (2008).
[CrossRef]

Torres, R. H.

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

Vertiatchikh, A.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[CrossRef]

Vigneron, J. P.

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” N. J. Phys. 10(3), 033014 (2008).
[CrossRef]

V. Welch, V. Lousse, O. Deparis, A. Parker, and J. P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041919 (2007).
[CrossRef] [PubMed]

Vukusic, P.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15(7), 4351–4358 (2007).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Now you see it - now you dont,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[CrossRef] [PubMed]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Wang, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Welch, V.

V. Welch, V. Lousse, O. Deparis, A. Parker, and J. P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041919 (2007).
[CrossRef] [PubMed]

Whitney, H. M.

H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover, “Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators,” Science 323(5910), 130–133 (2009).
[CrossRef] [PubMed]

Williamson, S.

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Now you see it - now you dont,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

Xiong, Z.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

Xu, C.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yang, J.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

Yin, H.

F. Liu, H. Yin, B. Dong, Y. Qing, L. Zhao, S. Meyer, X. Liu, J. Zi, and B. Chen, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 012901 (2008).
[CrossRef] [PubMed]

Yin, H. W.

Yin, Y.

H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

Yoshioka, S.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Yu, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Zhan, T. R.

Zhao, F.

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

Zhao, L.

F. Liu, H. Yin, B. Dong, Y. Qing, L. Zhao, S. Meyer, X. Liu, J. Zi, and B. Chen, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 012901 (2008).
[CrossRef] [PubMed]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Zheng, Y. M.

Zi, J.

B. Q. Dong, X. H. Liu, T. R. Zhan, L. P. Jiang, H. W. Yin, F. Liu, and J. Zi, “Structural coloration and photonic pseudogap in natural random close-packing photonic structures,” Opt. Express 18(14), 14430–14438 (2010).
[CrossRef] [PubMed]

F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009).
[CrossRef] [PubMed]

F. Liu, H. Yin, B. Dong, Y. Qing, L. Zhao, S. Meyer, X. Liu, J. Zi, and B. Chen, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 012901 (2008).
[CrossRef] [PubMed]

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

H. Noh, S. F. Liew, V. Saranathan, S. G. J. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. (Deerfield Beach Fla.) 22(26-27), 2871–2880 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Xiong, F. Zhao, J. Yang, and X. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
[CrossRef]

Chem. Rev. (1)

M. Srinivasarao, “Nano-optics in the biological world: Beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef]

J. Exp. Biol. (1)

A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

J. Opt. A, Pure Appl. Opt. (1)

A. R. Parker and Z. Hegedus, “Diffractive optics in spiders,” J. Opt. A, Pure Appl. Opt. 5(4), S111–S116 (2003).
[CrossRef]

N. J. Phys. (1)

M. Rassart, J. F. Colomer, T. Tabarrant, and J. P. Vigneron, “Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules,” N. J. Phys. 10(3), 033014 (2008).
[CrossRef]

Nat. Nanotechnol. (1)

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5(7), 511–515 (2010).
[CrossRef] [PubMed]

Nat. Photonics (3)

H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[CrossRef]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[CrossRef]

N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3(11), 641–644 (2009).
[CrossRef]

Nature (5)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structural colour: Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Now you see it - now you dont,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. E (1)

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E 77, 050904(R) (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

V. Welch, V. Lousse, O. Deparis, A. Parker, and J. P. Vigneron, “Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041919 (2007).
[CrossRef] [PubMed]

F. Liu, H. Yin, B. Dong, Y. Qing, L. Zhao, S. Meyer, X. Liu, J. Zi, and B. Chen, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 012901 (2008).
[CrossRef] [PubMed]

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (6)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[CrossRef]

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Proc. Biol. Sci. (1)

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Science (2)

H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover, “Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators,” Science 323(5910), 130–133 (2009).
[CrossRef] [PubMed]

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Other (3)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, NJ, 2008).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, England, 1999).

E. G. Loewen and E. Popov, Diffraction gratings and applications (Marcel Dekker, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) When a green light beam is normally incident on a mirror with periodic grooves on the surface, it is diffracted into an angle θ smaller than that of a yellow one (for the first order). (b)-(e) When a white light beam with a diameter of 1 mm is normally incident on an elytron of beetle H. sexmaculata, green light is diffracted into an angle larger than that of yellow light and the angular dispersion dθ/dλ is eight times the value in (a). (b) Schematic of the experimental setup for (c). For more vivid photos of the beetle, see http://www.dannesdjur.com/bilder/heterorrhina_sexmaculata_sexmaculata_1.jpg (c) Diffraction pattern on the screen. (d) and (e) Reflectivity of the elytron as a function of the wavelength λ and emergence angle θ. R(λ,θ) is defined as the ratio of the measured reflected intensity from the elytron to the value of specular reflection from a mirror.

Fig. 2
Fig. 2

(a)-(b) Transmission electron micrographs of the elytron of beetle H. sexmaculata, where the light and dark areas represent chitin (A) and melanoprotein (B), respectively. (a) Transverse cross section of the elytron. (b) Longitudinal cross section of the elytron showing that the middle part II is pierced by an array of rods. Inset is the Fourier Transform of (b). (c) Enlarged plot of (b). (d) Radial distribution function of the rod array in (b), indicating an average rod spacing of 850 nm. (e) Part II is simulated by a periodic layered structure (AB)100 which is inserted by a triangular lattice of rods with diameter D = 500 nm and lattice constant a. The layer thickness dA = dB = d/2 = 93 nm. The refractive index nA = 1.56 and nB = nrod = 1.68. A triangular lattice was used because it has a Fourier transform image (with 6 nearest neighbor points for the origin) more close to the ring the inset to (b) than a square lattice (with 4 nearest neighbor points for the origin).

Fig. 3
Fig. 3

(a) Photonic band structure (kx = ky = 0) and (b) reflectance at normal incidence for the structure in Fig. 2(d) (a = 850 nm). The results in (a) and (b) are calculated by plane-wave and scattering-matrix methods, respectively. (c) Dependence of the two gaps in (a) on the rod spacing a. (d) Emergence angles for the diffraction gap in (b), compared with the experimental results in Fig. 1(d). The blue line in (d) is the result for a periodic structure with a = 850 nm. The lines and gray areas in (c) and (d) are calculated by a plane-wave method and the dots are obtained from Eqs. (1)-(3).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ 0 = 2 d n e ,
λ 1 = 2 d n e / ( 1 + d 2 / a ' 2 ) .
sin θ = λ 1 d 2 d n e / λ 1 1 .

Metrics