Abstract

Thermal radiation from samples of Au layers patterned on GaAs, SiO2, and SiC at 300 K are studied with a scattering-type scanning near-field optical microscope (wavelength: ~14.5 μm), without applying external illumination. Clear near-field images are obtained with a spatial resolution of ~60 nm. All the near field signals derived from different demodulation procedures decrease rapidly with increasing probe height h with characteristic decay lengths of 40 ~60 nm. Near-field images are free from any signature of in-plane spatial interference. The findings are accounted for by theoretically expected surface evanescent waves, which are thermally excited in the close vicinity of material surfaces. Outside the near-field zone (1 μm < h), signals reappear and vary as a sinusoidal function of h, exhibiting a standing wave-like interference pattern. These far-field signals are ascribed to the effect of weak ambient radiation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. As a review, see for exampleK. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3-4), 59–112 (2005).
    [CrossRef]
  2. K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
    [CrossRef]
  3. A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
    [CrossRef] [PubMed]
  4. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
    [CrossRef]
  5. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
    [CrossRef] [PubMed]
  6. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65(13), 1623 (1994).
    [CrossRef]
  7. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159–161 (1994).
    [CrossRef] [PubMed]
  8. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
    [CrossRef]
  9. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
    [CrossRef] [PubMed]
  10. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
    [CrossRef] [PubMed]
  11. Y. Kajihara, K. Kosaka, and S. Komiyama, “A sensitive near-field microscope for thermal radiation,” Rev. Sci. Instrum. 81(3), 033706 (2010).
    [CrossRef] [PubMed]
  12. T. Ueda, Z. An, K. Hirakawa, and S. Komiyama, “Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer,” J. Appl. Phys. 103(9), 093109 (2008).
    [CrossRef]
  13. As a review, seeS. Komiyama, “Single-photon detectors in the terahertz range,” IEEE J. Sel. Top. Quantum Electron. 17(1), 54–66 (2011).
    [CrossRef]
  14. Y. Kajihara, S. Komiyama, P. Nickels, and T. Ueda, “A passive long-wavelength infrared microscope with a highly sensitive phototransistor,” Rev. Sci. Instrum. 80(6), 063702 (2009).
    [CrossRef] [PubMed]
  15. Different strengths of noise are caused mainly by inhomogeneity of crystals.
  16. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
    [CrossRef]
  17. For signal modulation, fTF = 32.7 kHz is too high for the high performance of CSIP detectors so that fM = 10 Hz is applied.
  18. We derived theoretical profiles from the electromagnetic local density of states (LDOS, [2]) by considering the scattering efficiency in terms of the point-dipole model [19]. The derived theoretical profile agrees relatively well with the experimental results. For quantitative comparison, however, it remains some ambiguity as to the scattering efficiency.
  19. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
    [CrossRef]
  20. As discussed in [19], scattering amplitude of a probe rapidly decreases with h in a range 0 < h < R (radius of apex curvature), which would cause the signals I0, If, and I2f to rapidly decrease. Nevertheless, if the near-field contains a long-extending component, I0 and If will have additional slow decay components.
  21. The LDOS is theoretically discussed in [2], which predicts the LDOS (z = 50 nm) on Au is more than 10 times larger than those on the dielectrics (SiC, GaAs, SiO2). The discrepancy with the experimental values arises from the isotropic model of [2]. Larger experimental values certainly arise from the piezoelectric acoustic phonon modes that are not considered in the theoretical treatment.
  22. The near-field signal If near the surface in Fig. 4(a) is a little smaller than that in Fig. 3. The difference is attributed mainly to the probe condition. The signal change is not the problem because the signal characteristics like signal ratio between different materials are independent of the probe condition.
  23. F. Formanek, Y. De Wilde, and L. Aigouy, “Analysis of the measured signals in apertureless near-field optical microscopy,” Ultramicroscopy 103(2), 133–139 (2005).
    [CrossRef] [PubMed]
  24. P. G. Gucciardi, G. Bachelier, and M. Allegrini, “Far-field background suppression in tip-modulated apertureless near-field optical microscopy,” J. Appl. Phys. 99(12), 124309 (2006).
    [CrossRef]
  25. The effective radiation temperature, Tradiation is estimated by comparing the far-field radiation intensities from 77K-liquid nitrogen, 300K-Au and 300K-SiO2. We can derive Tradiation by knowing the emissivity and the reflectivity of each material and noting that Tradiation and Tsample are respectively relevant to the reflected and the emitted radiations.
  26. M. Born, and E. Wolf, Principles of Optics, 7th edition, (Cambridge Univ. Press, Cambridge, 1999).
  27. s ~π + 0.0005 should be taken if a sphere dipole model is assumed as in [19].
  28. J. C. Brice, Properties of Gallium Arsenide, 2nd edition, (INSPEC, London, 1990).
  29. M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials, (CRC Press, Boca Raton, 2007).
  30. Thermodynamics requires that the interference pattern is visible when Tsample ≠ Tradiation but vanishes in thermal equilibrium, and that it reverses its sign according as Tsample > Tradiation or Tsample < Tradiation. The experimental values shown in Figs. 4–6 are opposite in sign to Relation (2) because Tsample > Tradiation.
  31. The probe tip in [10] is modulated in tapping mode at a frequency much higher than 10 Hz. It is difficult, however, to ascribe the discrepancies to the different method of tip modulation.

2011 (1)

As a review, seeS. Komiyama, “Single-photon detectors in the terahertz range,” IEEE J. Sel. Top. Quantum Electron. 17(1), 54–66 (2011).
[CrossRef]

2010 (1)

Y. Kajihara, K. Kosaka, and S. Komiyama, “A sensitive near-field microscope for thermal radiation,” Rev. Sci. Instrum. 81(3), 033706 (2010).
[CrossRef] [PubMed]

2009 (3)

Y. Kajihara, S. Komiyama, P. Nickels, and T. Ueda, “A passive long-wavelength infrared microscope with a highly sensitive phototransistor,” Rev. Sci. Instrum. 80(6), 063702 (2009).
[CrossRef] [PubMed]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[CrossRef]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[CrossRef] [PubMed]

2008 (1)

T. Ueda, Z. An, K. Hirakawa, and S. Komiyama, “Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer,” J. Appl. Phys. 103(9), 093109 (2008).
[CrossRef]

2006 (2)

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[CrossRef] [PubMed]

P. G. Gucciardi, G. Bachelier, and M. Allegrini, “Far-field background suppression in tip-modulated apertureless near-field optical microscopy,” J. Appl. Phys. 99(12), 124309 (2006).
[CrossRef]

2005 (2)

F. Formanek, Y. De Wilde, and L. Aigouy, “Analysis of the measured signals in apertureless near-field optical microscopy,” Ultramicroscopy 103(2), 133–139 (2005).
[CrossRef] [PubMed]

As a review, see for exampleK. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3-4), 59–112 (2005).
[CrossRef]

2003 (1)

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

2002 (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

2000 (2)

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

1999 (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

1995 (1)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

1994 (2)

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65(13), 1623 (1994).
[CrossRef]

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159–161 (1994).
[CrossRef] [PubMed]

Aigouy, L.

F. Formanek, Y. De Wilde, and L. Aigouy, “Analysis of the measured signals in apertureless near-field optical microscopy,” Ultramicroscopy 103(2), 133–139 (2005).
[CrossRef] [PubMed]

Allegrini, M.

P. G. Gucciardi, G. Bachelier, and M. Allegrini, “Far-field background suppression in tip-modulated apertureless near-field optical microscopy,” J. Appl. Phys. 99(12), 124309 (2006).
[CrossRef]

An, Z.

T. Ueda, Z. An, K. Hirakawa, and S. Komiyama, “Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer,” J. Appl. Phys. 103(9), 093109 (2008).
[CrossRef]

Bachelier, G.

P. G. Gucciardi, G. Bachelier, and M. Allegrini, “Far-field background suppression in tip-modulated apertureless near-field optical microscopy,” J. Appl. Phys. 99(12), 124309 (2006).
[CrossRef]

Carminati, R.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[CrossRef] [PubMed]

As a review, see for exampleK. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3-4), 59–112 (2005).
[CrossRef]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Chen, G.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[CrossRef] [PubMed]

Chen, Y.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[CrossRef] [PubMed]

Chevrier, J.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[CrossRef]

Comin, F.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[CrossRef]

De Wilde, Y.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[CrossRef] [PubMed]

F. Formanek, Y. De Wilde, and L. Aigouy, “Analysis of the measured signals in apertureless near-field optical microscopy,” Ultramicroscopy 103(2), 133–139 (2005).
[CrossRef] [PubMed]

Formanek, F.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[CrossRef] [PubMed]

F. Formanek, Y. De Wilde, and L. Aigouy, “Analysis of the measured signals in apertureless near-field optical microscopy,” Ultramicroscopy 103(2), 133–139 (2005).
[CrossRef] [PubMed]

Gralak, B.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[CrossRef] [PubMed]

Greffet, J.-J.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[CrossRef] [PubMed]

As a review, see for exampleK. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3-4), 59–112 (2005).
[CrossRef]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Grober, R. D.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

Gucciardi, P. G.

P. G. Gucciardi, G. Bachelier, and M. Allegrini, “Far-field background suppression in tip-modulated apertureless near-field optical microscopy,” J. Appl. Phys. 99(12), 124309 (2006).
[CrossRef]

Hillenbrand, R.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

Hirakawa, K.

T. Ueda, Z. An, K. Hirakawa, and S. Komiyama, “Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer,” J. Appl. Phys. 103(9), 093109 (2008).
[CrossRef]

Inouye, Y.

Joulain, K.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[CrossRef] [PubMed]

As a review, see for exampleK. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3-4), 59–112 (2005).
[CrossRef]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Jourdan, G.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[CrossRef]

Kajihara, Y.

Y. Kajihara, K. Kosaka, and S. Komiyama, “A sensitive near-field microscope for thermal radiation,” Rev. Sci. Instrum. 81(3), 033706 (2010).
[CrossRef] [PubMed]

Y. Kajihara, S. Komiyama, P. Nickels, and T. Ueda, “A passive long-wavelength infrared microscope with a highly sensitive phototransistor,” Rev. Sci. Instrum. 80(6), 063702 (2009).
[CrossRef] [PubMed]

Karrai, K.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

Kawata, S.

Keilmann, F.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Komiyama, S.

As a review, seeS. Komiyama, “Single-photon detectors in the terahertz range,” IEEE J. Sel. Top. Quantum Electron. 17(1), 54–66 (2011).
[CrossRef]

Y. Kajihara, K. Kosaka, and S. Komiyama, “A sensitive near-field microscope for thermal radiation,” Rev. Sci. Instrum. 81(3), 033706 (2010).
[CrossRef] [PubMed]

Y. Kajihara, S. Komiyama, P. Nickels, and T. Ueda, “A passive long-wavelength infrared microscope with a highly sensitive phototransistor,” Rev. Sci. Instrum. 80(6), 063702 (2009).
[CrossRef] [PubMed]

T. Ueda, Z. An, K. Hirakawa, and S. Komiyama, “Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer,” J. Appl. Phys. 103(9), 093109 (2008).
[CrossRef]

Kosaka, K.

Y. Kajihara, K. Kosaka, and S. Komiyama, “A sensitive near-field microscope for thermal radiation,” Rev. Sci. Instrum. 81(3), 033706 (2010).
[CrossRef] [PubMed]

Lemoine, P. A.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[CrossRef] [PubMed]

Marquier, F.

As a review, see for exampleK. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3-4), 59–112 (2005).
[CrossRef]

Mulet, J. P.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[CrossRef] [PubMed]

Mulet, J.-P.

As a review, see for exampleK. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3-4), 59–112 (2005).
[CrossRef]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

Narayanaswamy, A.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[CrossRef] [PubMed]

Nickels, P.

Y. Kajihara, S. Komiyama, P. Nickels, and T. Ueda, “A passive long-wavelength infrared microscope with a highly sensitive phototransistor,” Rev. Sci. Instrum. 80(6), 063702 (2009).
[CrossRef] [PubMed]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65(13), 1623 (1994).
[CrossRef]

Rousseau, E.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[CrossRef]

Shchegrov, A. V.

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Shen, S.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[CrossRef] [PubMed]

Siria, A.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[CrossRef]

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

Ueda, T.

Y. Kajihara, S. Komiyama, P. Nickels, and T. Ueda, “A passive long-wavelength infrared microscope with a highly sensitive phototransistor,” Rev. Sci. Instrum. 80(6), 063702 (2009).
[CrossRef] [PubMed]

T. Ueda, Z. An, K. Hirakawa, and S. Komiyama, “Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer,” J. Appl. Phys. 103(9), 093109 (2008).
[CrossRef]

Volz, S.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65(13), 1623 (1994).
[CrossRef]

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65(13), 1623 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65(13), 1623 (1994).
[CrossRef]

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

As a review, seeS. Komiyama, “Single-photon detectors in the terahertz range,” IEEE J. Sel. Top. Quantum Electron. 17(1), 54–66 (2011).
[CrossRef]

J. Appl. Phys. (2)

T. Ueda, Z. An, K. Hirakawa, and S. Komiyama, “Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer,” J. Appl. Phys. 103(9), 093109 (2008).
[CrossRef]

P. G. Gucciardi, G. Bachelier, and M. Allegrini, “Far-field background suppression in tip-modulated apertureless near-field optical microscopy,” J. Appl. Phys. 99(12), 124309 (2006).
[CrossRef]

Nano Lett. (1)

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3(9), 514–517 (2009).
[CrossRef]

Nature (3)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

Y. Kajihara, K. Kosaka, and S. Komiyama, “A sensitive near-field microscope for thermal radiation,” Rev. Sci. Instrum. 81(3), 033706 (2010).
[CrossRef] [PubMed]

Y. Kajihara, S. Komiyama, P. Nickels, and T. Ueda, “A passive long-wavelength infrared microscope with a highly sensitive phototransistor,” Rev. Sci. Instrum. 80(6), 063702 (2009).
[CrossRef] [PubMed]

Surf. Sci. Rep. (1)

As a review, see for exampleK. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3-4), 59–112 (2005).
[CrossRef]

Ultramicroscopy (1)

F. Formanek, Y. De Wilde, and L. Aigouy, “Analysis of the measured signals in apertureless near-field optical microscopy,” Ultramicroscopy 103(2), 133–139 (2005).
[CrossRef] [PubMed]

Other (13)

As discussed in [19], scattering amplitude of a probe rapidly decreases with h in a range 0 < h < R (radius of apex curvature), which would cause the signals I0, If, and I2f to rapidly decrease. Nevertheless, if the near-field contains a long-extending component, I0 and If will have additional slow decay components.

The LDOS is theoretically discussed in [2], which predicts the LDOS (z = 50 nm) on Au is more than 10 times larger than those on the dielectrics (SiC, GaAs, SiO2). The discrepancy with the experimental values arises from the isotropic model of [2]. Larger experimental values certainly arise from the piezoelectric acoustic phonon modes that are not considered in the theoretical treatment.

The near-field signal If near the surface in Fig. 4(a) is a little smaller than that in Fig. 3. The difference is attributed mainly to the probe condition. The signal change is not the problem because the signal characteristics like signal ratio between different materials are independent of the probe condition.

The effective radiation temperature, Tradiation is estimated by comparing the far-field radiation intensities from 77K-liquid nitrogen, 300K-Au and 300K-SiO2. We can derive Tradiation by knowing the emissivity and the reflectivity of each material and noting that Tradiation and Tsample are respectively relevant to the reflected and the emitted radiations.

M. Born, and E. Wolf, Principles of Optics, 7th edition, (Cambridge Univ. Press, Cambridge, 1999).

s ~π + 0.0005 should be taken if a sphere dipole model is assumed as in [19].

J. C. Brice, Properties of Gallium Arsenide, 2nd edition, (INSPEC, London, 1990).

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials, (CRC Press, Boca Raton, 2007).

Thermodynamics requires that the interference pattern is visible when Tsample ≠ Tradiation but vanishes in thermal equilibrium, and that it reverses its sign according as Tsample > Tradiation or Tsample < Tradiation. The experimental values shown in Figs. 4–6 are opposite in sign to Relation (2) because Tsample > Tradiation.

The probe tip in [10] is modulated in tapping mode at a frequency much higher than 10 Hz. It is difficult, however, to ascribe the discrepancies to the different method of tip modulation.

Different strengths of noise are caused mainly by inhomogeneity of crystals.

For signal modulation, fTF = 32.7 kHz is too high for the high performance of CSIP detectors so that fM = 10 Hz is applied.

We derived theoretical profiles from the electromagnetic local density of states (LDOS, [2]) by considering the scattering efficiency in terms of the point-dipole model [19]. The derived theoretical profile agrees relatively well with the experimental results. For quantitative comparison, however, it remains some ambiguity as to the scattering efficiency.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of the passive s-SNOM equipped with a CSIP detector. The tungsten probe is vertically modulated at f M = 10 Hz. (b) Spectra of CSIP detectors for λ = 14.5 μm and 12.0 μm.

Fig. 2
Fig. 2

(a) Optical microscope image of the sample with Au/SiC grating. (b) Passive near-field image (λ = 14.5 μm) at room temperature. (c) The spatial resolution ~60 nm shown in the step edge between Au and SiO2.

Fig. 3
Fig. 3

Approach curves of different signals, I 0, I f, and I 2f on Au for λ = 14.5 μm.

Fig. 4
Fig. 4

(a) Approach curves of detector signals I 0 and I fh=100 nm) above Au surface for h < 20 μm. (b) A schematic explanation: Specularly-reflected radiation at the sample surface (E r) interferes with the scattered radiation from the probe apex (E s).

Fig. 5
Fig. 5

(a) I f signal on Au with Δh = 600 nm, 200 nm, and 100 nm for λ = 14.5 μm. (b) I f signal on Au with Δh = 600 nm for λ = 12.0 μm.

Fig. 6
Fig. 6

(a) Sample surface is tilted at 45° from the horizontal plane. (b) I f signal against h on Au for λ = 14.5 μm with Δh = 600 nm in the tilted geometry.

Fig. 7
Fig. 7

(a) I f signals (Δh = 600 nm) on Au and on GaAs for h > 200 nm and λ = 14.5 μm. (b) One dimensional profiles scanned over a 25 μm-wide Au stripe on GaAs substrate at fixed heights of h = 2, 4, and 6 μm. (c) 2D image of the Au/GaAs pattern taken at h = 6 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( E r + E s ) 2 = 1 2 s 2 E 0 2 { 1 + cos 2 ( ω t α s ) } + 1 2 r 2 E 0 2 { 1 + cos 2 ( ω t α r α p a t h ) } + r s E 0 2 { cos ( 2 ω t α r α s α p a t h ) + cos ( α r α s + α p a t h ) } ,
I 0 ( h ) ( E r + E s ) 2 = 1 2 s 2 E 0 2 + 1 2 r 2 E 0 2 + r s E 0 2 cos ( α r α s + α p a t h ) ,
I f ( h ) = I 0 ( h ) I 0 ( h + Δ h ) 2 r s E 0 2 sin ( 2 π Δ h λ cos θ ) sin { α r α s + 4 π λ ( h + h ' + 1 2 Δ h ) cos θ } ,
I 2f ( h ) = I f ( h ) I f ( h + Δ h ) 4 r s E 0 2 sin 2 ( 2 π Δ h λ cos θ ) cos { α r α s + 4 π λ ( h + h ' + Δ h ) cos θ } .
d = λ 2 cos θ .

Metrics