Abstract

This paper demonstrates the thermally-switched liquid crystal (LC) alignments based on a rubbed poly(N-vinyl carbazole) (PVK) film, and their application for polarization rotators. The mechanically rubbed PVK layer can induce a planar alignment of LCs with their director axis perpendicular to the direction of rubbing. This direction can be switched toward the rubbing direction by thermal treatment. Experimentally, the angle of re-orientation of the director axis increases with the temperature in a specific range of temperatures. In this study, the optical properties of linear and concentric polarization rotators, fabricated using a rubbed PVK film with thermal treatment, are examined.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ren and S.-T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
    [CrossRef]
  2. C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
    [CrossRef]
  3. Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y. Fuh, and T. H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16(6), 3768–3775 (2008).
    [CrossRef] [PubMed]
  4. S.-W. Ko, Y.-Y. Tzeng, C.-L. Ting, A. Y. Fuh, and T. H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express 16(24), 19643–19648 (2008).
    [CrossRef] [PubMed]
  5. Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S.-T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13(12), 4638–4644 (2005).
    [CrossRef] [PubMed]
  6. S. Nersisyan, N. Tabiryan, D.-M. Steeves, and B.-R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17(14), 11926–11934 (2009).
    [CrossRef] [PubMed]
  7. A. Y. Fuh, C. C. Chen, C. K. Liu, and K. T. Cheng, “Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals,” Opt. Express 17(9), 7088–7094 (2009).
    [CrossRef] [PubMed]
  8. A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
    [CrossRef]
  9. W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34(17), 2545–2547 (2009).
    [CrossRef] [PubMed]
  10. C.-Y. Huang, J.-M. Ma, T.-S. Mo, K. C. Lo, K. Y. Lo, and C.-R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
    [CrossRef]
  11. S.-Y. Huang, T.-C. Wung, A. Y.-G. Fuh, H.-C. Yeh, C.-Y. Huang, C.-M. Ma, S.-C. Huang, T.-S. Mo, and C.-R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
    [CrossRef]
  12. M. Kaczmarek and A. Dyadyusha, “Structured, photosensitive PVK and PVCN polymer layers for control of liquid crystal alignment,” J. Nonlinear Opt. Phys. Mater. 12(4), 547–555 (2003).
    [CrossRef]
  13. M. Hasegawa, “Key molecular structure determination of photoalignment materials from the effects of linearly polarized deep UV light on several polymers,” Jpn. J. Appl. Phys. 39(Part 1, No. 3A), 1272–1277 (2000).
    [CrossRef]
  14. K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara, and Y. Matsuo, “Polystyrene derivative films for liquid crystal alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 180(2), 223–232 (1990).
  15. V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29(140), 919–930 (1933).
    [CrossRef]
  16. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [CrossRef]
  17. A. Y.-G. Fuh, S.-W. Ko, S.-H. Huang, Y.-Y. Chen, and T.-H. Lin, “Polarization-independent liquid crystal lens based on axially symmetric photoalignment,” Opt. Express 19(3), 2294–2300 (2011).
    [CrossRef] [PubMed]
  18. A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
    [CrossRef]
  19. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
    [CrossRef]
  20. Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun. 267(1), 69–73 (2006).
    [CrossRef]
  21. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

2011

2010

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

2009

2008

2007

H. Ren and S.-T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
[CrossRef]

2006

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun. 267(1), 69–73 (2006).
[CrossRef]

2005

Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S.-T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13(12), 4638–4644 (2005).
[CrossRef] [PubMed]

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

2004

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

2003

M. Kaczmarek and A. Dyadyusha, “Structured, photosensitive PVK and PVCN polymer layers for control of liquid crystal alignment,” J. Nonlinear Opt. Phys. Mater. 12(4), 547–555 (2003).
[CrossRef]

2000

M. Hasegawa, “Key molecular structure determination of photoalignment materials from the effects of linearly polarized deep UV light on several polymers,” Jpn. J. Appl. Phys. 39(Part 1, No. 3A), 1272–1277 (2000).
[CrossRef]

1990

K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara, and Y. Matsuo, “Polystyrene derivative films for liquid crystal alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 180(2), 223–232 (1990).

1933

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29(140), 919–930 (1933).
[CrossRef]

Brugioni, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Cao, Z.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun. 267(1), 69–73 (2006).
[CrossRef]

Chen, C. C.

Chen, J.-C.

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

Chen, W.-Z.

Chen, Y.-Y.

Cheng, K. T.

Cheng, K.-T.

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

Dyadyusha, A.

M. Kaczmarek and A. Dyadyusha, “Structured, photosensitive PVK and PVCN polymer layers for control of liquid crystal alignment,” J. Nonlinear Opt. Phys. Mater. 12(4), 547–555 (2003).
[CrossRef]

Faetti, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Freedericksz, V.

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29(140), 919–930 (1933).
[CrossRef]

Fuh, A. Y.

Fuh, A. Y.-G.

A. Y.-G. Fuh, S.-W. Ko, S.-H. Huang, Y.-Y. Chen, and T.-H. Lin, “Polarization-independent liquid crystal lens based on axially symmetric photoalignment,” Opt. Express 19(3), 2294–2300 (2011).
[CrossRef] [PubMed]

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

S.-Y. Huang, T.-C. Wung, A. Y.-G. Fuh, H.-C. Yeh, C.-Y. Huang, C.-M. Ma, S.-C. Huang, T.-S. Mo, and C.-R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Hasegawa, M.

M. Hasegawa, “Key molecular structure determination of photoalignment materials from the effects of linearly polarized deep UV light on several polymers,” Jpn. J. Appl. Phys. 39(Part 1, No. 3A), 1272–1277 (2000).
[CrossRef]

Hu, L.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun. 267(1), 69–73 (2006).
[CrossRef]

Huang, C.-M.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

Huang, C.-Y.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

S.-Y. Huang, T.-C. Wung, A. Y.-G. Fuh, H.-C. Yeh, C.-Y. Huang, C.-M. Ma, S.-C. Huang, T.-S. Mo, and C.-R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

C.-Y. Huang, J.-M. Ma, T.-S. Mo, K. C. Lo, K. Y. Lo, and C.-R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
[CrossRef]

Huang, S.-C.

S.-Y. Huang, T.-C. Wung, A. Y.-G. Fuh, H.-C. Yeh, C.-Y. Huang, C.-M. Ma, S.-C. Huang, T.-S. Mo, and C.-R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Huang, S.-H.

Huang, S.-Y.

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

S.-Y. Huang, T.-C. Wung, A. Y.-G. Fuh, H.-C. Yeh, C.-Y. Huang, C.-M. Ma, S.-C. Huang, T.-S. Mo, and C.-R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Ishihara, S.

K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara, and Y. Matsuo, “Polystyrene derivative films for liquid crystal alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 180(2), 223–232 (1990).

Kaczmarek, M.

M. Kaczmarek and A. Dyadyusha, “Structured, photosensitive PVK and PVCN polymer layers for control of liquid crystal alignment,” J. Nonlinear Opt. Phys. Mater. 12(4), 547–555 (2003).
[CrossRef]

Ke, S.-W.

Kimball, B.-R.

Ko, S.-W.

Lee, C.-R.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

S.-Y. Huang, T.-C. Wung, A. Y.-G. Fuh, H.-C. Yeh, C.-Y. Huang, C.-M. Ma, S.-C. Huang, T.-S. Mo, and C.-R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

C.-Y. Huang, J.-M. Ma, T.-S. Mo, K. C. Lo, K. Y. Lo, and C.-R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
[CrossRef]

Lee, J.-H.

Li, J.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Lin, T. H.

Lin, T.-H.

Lin, Y.-H.

Liu, C. K.

Lo, K. C.

Lo, K. Y.

Lo, K.-Y.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

Lu, X.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun. 267(1), 69–73 (2006).
[CrossRef]

Ma, C.-M.

S.-Y. Huang, T.-C. Wung, A. Y.-G. Fuh, H.-C. Yeh, C.-Y. Huang, C.-M. Ma, S.-C. Huang, T.-S. Mo, and C.-R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Ma, J.-M.

Matsuo, Y.

K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara, and Y. Matsuo, “Polystyrene derivative films for liquid crystal alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 180(2), 223–232 (1990).

Meucci, R.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Mo, T.-S.

S.-Y. Huang, T.-C. Wung, A. Y.-G. Fuh, H.-C. Yeh, C.-Y. Huang, C.-M. Ma, S.-C. Huang, T.-S. Mo, and C.-R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

C.-Y. Huang, J.-M. Ma, T.-S. Mo, K. C. Lo, K. Y. Lo, and C.-R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
[CrossRef]

Mu, Q.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun. 267(1), 69–73 (2006).
[CrossRef]

Nakajima, K.

K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara, and Y. Matsuo, “Polystyrene derivative films for liquid crystal alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 180(2), 223–232 (1990).

Nersisyan, S.

Nie, X.

Ren, H.

H. Ren and S.-T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
[CrossRef]

Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S.-T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13(12), 4638–4644 (2005).
[CrossRef] [PubMed]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Sato, S.

K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara, and Y. Matsuo, “Polystyrene derivative films for liquid crystal alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 180(2), 223–232 (1990).

Steeves, D.-M.

Tabiryan, N.

Ting, C.-L.

Tsai, H.-Y.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

Tsai, Y.-T.

Tzeng, Y.-Y.

Wakemoto, H.

K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara, and Y. Matsuo, “Polystyrene derivative films for liquid crystal alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 180(2), 223–232 (1990).

Wang, Y.-H.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

Wu, S.-T.

H. Ren and S.-T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
[CrossRef]

Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S.-T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13(12), 4638–4644 (2005).
[CrossRef] [PubMed]

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Wu, Y.-H.

Wung, T.-C.

S.-Y. Huang, T.-C. Wung, A. Y.-G. Fuh, H.-C. Yeh, C.-Y. Huang, C.-M. Ma, S.-C. Huang, T.-S. Mo, and C.-R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Xuan, L.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun. 267(1), 69–73 (2006).
[CrossRef]

Yeh, H.-C.

S.-Y. Huang, T.-C. Wung, A. Y.-G. Fuh, H.-C. Yeh, C.-Y. Huang, C.-M. Ma, S.-C. Huang, T.-S. Mo, and C.-R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Yokotani, F.

K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara, and Y. Matsuo, “Polystyrene derivative films for liquid crystal alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 180(2), 223–232 (1990).

Zolina, V.

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29(140), 919–930 (1933).
[CrossRef]

Appl. Phys. B

S.-Y. Huang, T.-C. Wung, A. Y.-G. Fuh, H.-C. Yeh, C.-Y. Huang, C.-M. Ma, S.-C. Huang, T.-S. Mo, and C.-R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Appl. Phys. Lett.

H. Ren and S.-T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
[CrossRef]

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

J. Appl. Phys.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

M. Kaczmarek and A. Dyadyusha, “Structured, photosensitive PVK and PVCN polymer layers for control of liquid crystal alignment,” J. Nonlinear Opt. Phys. Mater. 12(4), 547–555 (2003).
[CrossRef]

J. Soc. Inf. Disp.

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

M. Hasegawa, “Key molecular structure determination of photoalignment materials from the effects of linearly polarized deep UV light on several polymers,” Jpn. J. Appl. Phys. 39(Part 1, No. 3A), 1272–1277 (2000).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara, and Y. Matsuo, “Polystyrene derivative films for liquid crystal alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 180(2), 223–232 (1990).

Opt. Commun.

Z. Cao, L. Xuan, L. Hu, X. Lu, and Q. Mu, “Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator,” Opt. Commun. 267(1), 69–73 (2006).
[CrossRef]

Opt. Express

C.-Y. Huang, J.-M. Ma, T.-S. Mo, K. C. Lo, K. Y. Lo, and C.-R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
[CrossRef]

A. Y.-G. Fuh, S.-W. Ko, S.-H. Huang, Y.-Y. Chen, and T.-H. Lin, “Polarization-independent liquid crystal lens based on axially symmetric photoalignment,” Opt. Express 19(3), 2294–2300 (2011).
[CrossRef] [PubMed]

Y.-H. Wu, Y.-H. Lin, H. Ren, X. Nie, J.-H. Lee, and S.-T. Wu, “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13(12), 4638–4644 (2005).
[CrossRef] [PubMed]

Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y. Fuh, and T. H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16(6), 3768–3775 (2008).
[CrossRef] [PubMed]

S.-W. Ko, Y.-Y. Tzeng, C.-L. Ting, A. Y. Fuh, and T. H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express 16(24), 19643–19648 (2008).
[CrossRef] [PubMed]

A. Y. Fuh, C. C. Chen, C. K. Liu, and K. T. Cheng, “Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals,” Opt. Express 17(9), 7088–7094 (2009).
[CrossRef] [PubMed]

S. Nersisyan, N. Tabiryan, D.-M. Steeves, and B.-R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17(14), 11926–11934 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Trans. Faraday Soc.

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29(140), 919–930 (1933).
[CrossRef]

Other

S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Variations of stable transmittance with temperature of TN LC sample in heating and cooling. Images of LC sample observed under crossed-POM, after thermal treatment with (R) at an angle of (b) 0°, (c) 45° and (d) 90°, with respect to the transmission axis of the polarizer under a crossed-POM. (P) and (A) are transmission axes of polarizer and analyzer.

Fig. 2
Fig. 2

(a) Experimental setup for fabricating linear polarization rotator; (b) LC directors in a linear polarization rotator.

Fig. 3
Fig. 3

Photographs of fabricated linear polarization rotator observed under two polarizers with (P) parallel to (R) and (A) at an angle of (a) 0°, (b) 45°, (c) 90° and (d) 135° with respect to (R). (e) Transmittance of a linear polarization rotator as a function of laser beam position along y-axis. Dotted and solid lines are measured and theoretical results, respectively.

Fig. 4
Fig. 4

(a) Experimental setup for fabricating concentric polarization rotator; (b) LC directors in a concentric polarization rotator.

Fig. 5
Fig. 5

Photographs of fabricated concentric polarization rotator observed under two polarizers, with (P) parallel to (R) and (A) set to an angle of (a) 0°, (b) 45°, (c) 90° and (d) 135° with respect to (R). Transmittance of concentric polarization rotator as a function of laser beam position along (e) (X) and (f) (Y) directions. Dotted and solid lines plot experimental and theoretical results, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = T 0 sin 2 [ π 2 ( Y ( X ) y 1 ( x 1 ) y 2 ( x 2 ) y 1 ( x 1 ) ) ] ,

Metrics