Abstract

Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2H2), 291–306 (2010).
    [CrossRef] [PubMed]
  2. L. V. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19(2-3), 123–138 (2003-2004).
  3. V. F. Humphrey, “Ultrasound and matter—physical interactions,” Prog. Biophys. Mol. Biol. 93(1–3), 195–211 (2007).
    [CrossRef]
  4. M. Fatemi and J. F. Greenleaf, “Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound,” Phys. Med. Biol. 45(6), 1449–1464 (2000).
    [CrossRef] [PubMed]
  5. S. G. Chen, M. Fatemi, R. Kinnick, and J. F. Greenleaf, “Comparison of stress field forming methods for vibro-acoustography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(3), 313–321 (2004).
    [CrossRef] [PubMed]
  6. R. J. Zemp, C. Kim, and L. V. Wang, “Ultrasound-modulated optical tomography with intense acoustic bursts,” Appl. Opt. 46(10), 1615–1623 (2007).
    [CrossRef] [PubMed]
  7. C. Kim, R. J. Zemp, and L. V. Wang, “Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography,” Opt. Lett. 31(16), 2423–2425 (2006).
    [CrossRef] [PubMed]
  8. R. Li, L. P. Song, D. S. Elson, and M. X. Tang, “Parallel detection of amplitude-modulated, ultrasound-modulated optical signals,” Opt. Lett. 35(15), 2633–2635 (2010).
    [CrossRef] [PubMed]
  9. K. Daoudi, A. C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
    [CrossRef]
  10. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  11. T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
    [CrossRef]
  12. E. Bossy, A. R. Funke, K. Daoudi, A. C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
    [CrossRef]
  13. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008).
    [CrossRef] [PubMed]

2010

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2H2), 291–306 (2010).
[CrossRef] [PubMed]

R. Li, L. P. Song, D. S. Elson, and M. X. Tang, “Parallel detection of amplitude-modulated, ultrasound-modulated optical signals,” Opt. Lett. 35(15), 2633–2635 (2010).
[CrossRef] [PubMed]

2009

K. Daoudi, A. C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[CrossRef]

2008

2007

R. J. Zemp, C. Kim, and L. V. Wang, “Ultrasound-modulated optical tomography with intense acoustic bursts,” Appl. Opt. 46(10), 1615–1623 (2007).
[CrossRef] [PubMed]

V. F. Humphrey, “Ultrasound and matter—physical interactions,” Prog. Biophys. Mol. Biol. 93(1–3), 195–211 (2007).
[CrossRef]

E. Bossy, A. R. Funke, K. Daoudi, A. C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[CrossRef]

2006

2004

S. G. Chen, M. Fatemi, R. Kinnick, and J. F. Greenleaf, “Comparison of stress field forming methods for vibro-acoustography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(3), 313–321 (2004).
[CrossRef] [PubMed]

2000

M. Fatemi and J. F. Greenleaf, “Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound,” Phys. Med. Biol. 45(6), 1449–1464 (2000).
[CrossRef] [PubMed]

1997

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[CrossRef]

1991

Bilgen, M.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[CrossRef]

Boccara, A. C.

K. Daoudi, A. C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[CrossRef]

E. Bossy, A. R. Funke, K. Daoudi, A. C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[CrossRef]

Bossy, E.

K. Daoudi, A. C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[CrossRef]

E. Bossy, A. R. Funke, K. Daoudi, A. C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[CrossRef]

Chen, S. G.

S. G. Chen, M. Fatemi, R. Kinnick, and J. F. Greenleaf, “Comparison of stress field forming methods for vibro-acoustography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(3), 313–321 (2004).
[CrossRef] [PubMed]

Daoudi, K.

K. Daoudi, A. C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[CrossRef]

E. Bossy, A. R. Funke, K. Daoudi, A. C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[CrossRef]

Duncan, D. D.

Dunsby, C.

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2H2), 291–306 (2010).
[CrossRef] [PubMed]

Eckersley, R. J.

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2H2), 291–306 (2010).
[CrossRef] [PubMed]

Elson, D. S.

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2H2), 291–306 (2010).
[CrossRef] [PubMed]

R. Li, L. P. Song, D. S. Elson, and M. X. Tang, “Parallel detection of amplitude-modulated, ultrasound-modulated optical signals,” Opt. Lett. 35(15), 2633–2635 (2010).
[CrossRef] [PubMed]

Fatemi, M.

S. G. Chen, M. Fatemi, R. Kinnick, and J. F. Greenleaf, “Comparison of stress field forming methods for vibro-acoustography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(3), 313–321 (2004).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound,” Phys. Med. Biol. 45(6), 1449–1464 (2000).
[CrossRef] [PubMed]

Fink, M.

E. Bossy, A. R. Funke, K. Daoudi, A. C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[CrossRef]

Funke, A. R.

E. Bossy, A. R. Funke, K. Daoudi, A. C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[CrossRef]

Greenleaf, J. F.

S. G. Chen, M. Fatemi, R. Kinnick, and J. F. Greenleaf, “Comparison of stress field forming methods for vibro-acoustography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(3), 313–321 (2004).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound,” Phys. Med. Biol. 45(6), 1449–1464 (2000).
[CrossRef] [PubMed]

Hall, T. J.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[CrossRef]

Humphrey, V. F.

V. F. Humphrey, “Ultrasound and matter—physical interactions,” Prog. Biophys. Mol. Biol. 93(1–3), 195–211 (2007).
[CrossRef]

Insana, M. F.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[CrossRef]

Kim, C.

Kinnick, R.

S. G. Chen, M. Fatemi, R. Kinnick, and J. F. Greenleaf, “Comparison of stress field forming methods for vibro-acoustography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(3), 313–321 (2004).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Krouskop, T. A.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[CrossRef]

Li, R.

R. Li, L. P. Song, D. S. Elson, and M. X. Tang, “Parallel detection of amplitude-modulated, ultrasound-modulated optical signals,” Opt. Lett. 35(15), 2633–2635 (2010).
[CrossRef] [PubMed]

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2H2), 291–306 (2010).
[CrossRef] [PubMed]

Moes, C. J. M.

Prahl, S. A.

Song, L. P.

Tang, M. X.

R. Li, L. P. Song, D. S. Elson, and M. X. Tang, “Parallel detection of amplitude-modulated, ultrasound-modulated optical signals,” Opt. Lett. 35(15), 2633–2635 (2010).
[CrossRef] [PubMed]

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2H2), 291–306 (2010).
[CrossRef] [PubMed]

Tanter, M.

E. Bossy, A. R. Funke, K. Daoudi, A. C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[CrossRef]

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Wang, L. V.

Wells, P. N. T.

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2H2), 291–306 (2010).
[CrossRef] [PubMed]

Wells-Gray, E. M.

Zemp, R. J.

Appl. Opt.

Appl. Phys. Lett.

K. Daoudi, A. C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[CrossRef]

E. Bossy, A. R. Funke, K. Daoudi, A. C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[CrossRef]

Dis. Markers

L. V. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19(2-3), 123–138 (2003-2004).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

S. G. Chen, M. Fatemi, R. Kinnick, and J. F. Greenleaf, “Comparison of stress field forming methods for vibro-acoustography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(3), 313–321 (2004).
[CrossRef] [PubMed]

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

M. Fatemi and J. F. Greenleaf, “Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound,” Phys. Med. Biol. 45(6), 1449–1464 (2000).
[CrossRef] [PubMed]

Proc. Inst. Mech. Eng. H

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2H2), 291–306 (2010).
[CrossRef] [PubMed]

Prog. Biophys. Mol. Biol.

V. F. Humphrey, “Ultrasound and matter—physical interactions,” Prog. Biophys. Mol. Biol. 93(1–3), 195–211 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup: FG, Function Generator; US, Ultrasound transducer; RF amp, radio frequency amplifier.

Fig. 2
Fig. 2

Three inhomogeneous phantoms. (a) The black cylinder represents the cylindrical inclusion containing India ink. (b) The black cylinder represents the cylindrical inclusion containing India ink, whilst the grey cylinder represents the inclusion with modified shear stiffness. (c) The two cylindrical inclusions contain the same amount of India ink. The one on the left has the same mechanical property as the bulk phantom, while the one on the right is stiffer than the bulk phantom.

Fig. 3
Fig. 3

(a) Contrast difference versus CCD trigger delay time for a 250 Hz-AM-US burst with 0.2 ms and 2 ms CCD exposure time. (b-c) Contrast difference for different positions of ultrasound focal point with 0.2 ms (b) and 2 ms (c) CCD exposure time. (d) Contrast difference for AM bursts with different number of cycles when ultrasound focal point was 20 mm away from the centre of the optical detection area.

Fig. 4
Fig. 4

(a) Contrast difference versus CCD trigger delay time for a 250 Hz-AM US burst with 0.2 ms and 2 ms CCD exposure time in a homogeneous area (blue line) and an absorbing area (red line) (b) Comparison of the 1-D spatial profile of an optical absorber obtained with a 0.2 ms CCD exposure time measured 2 ms after launching the acoustic burst (L1) with 1-D profiles with a 2 ms CCD exposure time measured at varying delay times after launching the acoustic burst (L2-L5, results of CCD delay time greater than 3 ms not shown in this graph). (c) a plot of the same 1-D profiles (L1-l5) as those shown in (b), plus L6-L10 which were obtained with CCD delay times between 4 and 8 ms.

Fig. 5
Fig. 5

Contrast difference versus CCD trigger delay time for a 250 Hz-AM US burst with 0.2 ms (a) and 2 ms (b) CCD exposure time in different phantoms

Fig. 6
Fig. 6

(a) The phantom picture taken right after the experiments. The diameter of the optical inclusion (the one on the left) is ~3.5 mm. The diameter of the stiffer inclusion (the one with a red-dash circle on the right) is ~8 mm. (b) 1-D profiles of an inhomogeneous phantom measured with various CCD exposure times and CCD delay times. There are two inclusions inside the phantom. The one on the left has added India ink for optical absorption but has the same stiffness with the background. The one on the right is stiffer than the bulk of the phantom but has a similar optical absorption as the background.

Fig. 7
Fig. 7

(a) The phantom picture taken right after the experiments. The diameters of the two black-optical inclusions are ~7 mm. (b) 1-D profiles of an inhomogeneous phantom measured with various CCD exposure times and CCD delay times. There are two inclusions inside the phantom. Both of them have added India ink for optical absorption but have different stiffness. The one on the left has the same stiffness with the background. The one on the right is stiffer than the bulk of the phantom. T in the legend stands for the measurement delay time following an acoustic burst.

Metrics