Abstract

Light propagation behavior in a resonantly absorbing waveguide array is analyzed. Both a Lorentzian line shape and an inhomogeneous broadened absorbing line shape are considered, with their imaginary and real part of the refractive index determined by a Kramers–Kronig relationship. The diffracted wave is shown to have the frequency spectra determined by the material absorption, dispersion as well as the waveguide structure. An interesting phenomenon is that a spectral hole is produced and becomes deeper in the diffraction spectrum as the thickness of the resonantly absorbing waveguide array increases. The experimental measurements conducted in a waveguide array are found to be in good agreement with the numerical results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
    [CrossRef] [PubMed]
  2. Z. G. Chen, H. Martin, E. D. Eugenieva, J. J. Xu, and J. K. Yang, “Formation of discrete solitons in light-induced photonic lattices,” Opt. Express 13(6), 1816–1826 (2005).
    [CrossRef] [PubMed]
  3. A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
    [CrossRef]
  4. Y. Y. Li, W. Pang, Y. Z. Chen, Z. Q. Yu, J. Y. Zhou, and H. R. Zhang, “Defect-mediated discrete solitons in optically induced photorefractive lattices,” Phys. Rev. A 80(4), 043824 (2009).
    [CrossRef]
  5. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
    [CrossRef] [PubMed]
  6. A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-BLOCH oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103(14), 143903 (2009).
    [CrossRef] [PubMed]
  7. S. Longhi, “Bloch dynamics of light waves in helical optical waveguide arrays,” Phys. Rev. B 76(19), 195119 (2007).
    [CrossRef]
  8. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
    [CrossRef] [PubMed]
  9. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4 Pt 2), 046602 (2002).
    [CrossRef] [PubMed]
  10. J. D. Liou, C. K. Lee, and K. C. Wu, “Photorefractive crystal-based holographic interferometry system for full-field wave propagation metrology,” Opt. Express 15(9), 5460–5472 (2007).
    [CrossRef] [PubMed]
  11. A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, “Discrete propagation and spatial solitons in nematic liquid crystals,” Opt. Lett. 29(13), 1530–1532 (2004).
    [CrossRef] [PubMed]
  12. A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, “Discrete light propagation and self-trapping in liquid crystals,” Opt. Express 13(6), 1808–1815 (2005).
    [CrossRef] [PubMed]
  13. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
    [CrossRef] [PubMed]
  14. N.-C. Panoiu, B. A. Malomed, and R. M. Osgood, Jr., “Semidiscrete solitons in arrayed waveguide structures with Kerr nonlinearity,” Phys. Rev. A 78(1), 013801 (2008).
    [CrossRef]
  15. D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching,” Phys. Rev. A 72(1), 013807 (2005).
    [CrossRef]
  16. M. Blaauboer, B. A. Malomed, and G. Kurizki, “Spatiotemporally localized multidimensional solitons in self-induced transparency media,” Phys. Rev. Lett. 84(9), 1906–1909 (2000).
    [CrossRef] [PubMed]
  17. J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81(23), 4332–4334 (2002).
    [CrossRef]
  18. O. Toader, S. John, and K. Busch, “Optical trapping, field enhancement and laser cooling in photonic crystals,” Opt. Express 8(3), 217–222 (2001).
    [CrossRef] [PubMed]
  19. J. Y. Zhou, H. G. Shao, J. Zhao, X. Yu, and K. S. Wong, “Storage and release of femtosecond laser pulses in a resonant photonic crystal,” Opt. Lett. 30(12), 1560–1562 (2005).
    [CrossRef] [PubMed]
  20. I. V. Mel’nikov and J. S. Aitchison, “Gap soliton memory in a resonant photonic crystal,” Appl. Phys. Lett. 87(20), 201111 (2005).
    [CrossRef]
  21. R. Khomeriki and J. Leon, “Driving light pulses with light in two-level media,” Phys. Rev. Lett. 99(18), 183601 (2007).
    [CrossRef] [PubMed]
  22. J. T. Li and J. Y. Zhou, “Nonlinear optical frequency conversion with stopped short light pulses,” Opt. Express 14(7), 2811–2816 (2006).
    [CrossRef] [PubMed]
  23. A. Kozhekin and G. Kurizki, “Self-induced transparency in Bragg reflectors: gap solitons near absorption resonances,” Phys. Rev. Lett. 74(25), 5020–5023 (1995).
    [CrossRef] [PubMed]
  24. A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81(17), 3647–3650 (1998).
    [CrossRef]
  25. M. Blaauboer, G. Kurizki, and B. A. Malomed, “Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(1 Pt A1 Pt A), R57–R59 (2000).
    [CrossRef] [PubMed]
  26. J. Zhu, J. Y. Zhou, and J. Cheng, “Moving and stationary spatial-temporal solitons in a resonantly absorbing Bragg reflector,” Opt. Express 13(18), 7133–7138 (2005).
    [CrossRef] [PubMed]
  27. Y. Y. Li, B. A. Malomed, M. N. Feng, and J. Y. Zhou, “Array and checkerboard optical waveguides controlled by the electromagnetically induced transparency,” Phys. Rev. A 82(6), 063813 (2010).
    [CrossRef]
  28. J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
    [CrossRef]
  29. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
    [CrossRef] [PubMed]
  30. L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
    [CrossRef]
  31. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
    [CrossRef]
  32. O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98(10), 103901 (2007).
    [CrossRef] [PubMed]
  33. O. B. Treidel, O. Peleg, and M. Segev, “Symmetry breaking in honeycomb photonic lattices,” Opt. Lett. 33, 2251–2253 (2009).
    [CrossRef]
  34. B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, “Wave and defect dynamics in nonlinear photonic quasicrystals,” Nature 440(7088), 1166–1169 (2006).
    [CrossRef] [PubMed]
  35. R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, “Cubic-quintic solitons in the checkerboard potential,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 2), 066604 (2007).
    [CrossRef]
  36. R. Driben and B. A. Malomed, “Stabilization of two-dimensional solitons and vortices against supercritical collapse by lattice potentials,” Eur. Phys. J. D 50(3), 317–323 (2008).
    [CrossRef]
  37. F. Fedele, J. K. Yang, and Z. G. Chen, “Defect modes in one-dimensional photonic lattices,” Opt. Lett. 30(12), 1506–1508 (2005).
    [CrossRef] [PubMed]
  38. X. S. Wang, Z. G. Chen, and P. G. Kevrekidis, “Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices,” Phys. Rev. Lett. 96(8), 083904 (2006).
    [CrossRef] [PubMed]
  39. J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004).
    [CrossRef] [PubMed]
  40. A. Argyros, I. M. Bassett, M. A. van Eijkelenborg, M. C. J. Large, J. Zagari, N. A. P. Nicorovici, R. C. McPhedran, and C. M. de Sterke, “Ring structures in microstructured polymer optical fibres,” Opt. Express 9(13), 813–820 (2001).
    [CrossRef] [PubMed]

2010

Y. Y. Li, B. A. Malomed, M. N. Feng, and J. Y. Zhou, “Array and checkerboard optical waveguides controlled by the electromagnetically induced transparency,” Phys. Rev. A 82(6), 063813 (2010).
[CrossRef]

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

2009

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-BLOCH oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103(14), 143903 (2009).
[CrossRef] [PubMed]

Y. Y. Li, W. Pang, Y. Z. Chen, Z. Q. Yu, J. Y. Zhou, and H. R. Zhang, “Defect-mediated discrete solitons in optically induced photorefractive lattices,” Phys. Rev. A 80(4), 043824 (2009).
[CrossRef]

O. B. Treidel, O. Peleg, and M. Segev, “Symmetry breaking in honeycomb photonic lattices,” Opt. Lett. 33, 2251–2253 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

2008

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

N.-C. Panoiu, B. A. Malomed, and R. M. Osgood, Jr., “Semidiscrete solitons in arrayed waveguide structures with Kerr nonlinearity,” Phys. Rev. A 78(1), 013801 (2008).
[CrossRef]

R. Driben and B. A. Malomed, “Stabilization of two-dimensional solitons and vortices against supercritical collapse by lattice potentials,” Eur. Phys. J. D 50(3), 317–323 (2008).
[CrossRef]

2007

R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, “Cubic-quintic solitons in the checkerboard potential,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 2), 066604 (2007).
[CrossRef]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98(10), 103901 (2007).
[CrossRef] [PubMed]

R. Khomeriki and J. Leon, “Driving light pulses with light in two-level media,” Phys. Rev. Lett. 99(18), 183601 (2007).
[CrossRef] [PubMed]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[CrossRef] [PubMed]

S. Longhi, “Bloch dynamics of light waves in helical optical waveguide arrays,” Phys. Rev. B 76(19), 195119 (2007).
[CrossRef]

J. D. Liou, C. K. Lee, and K. C. Wu, “Photorefractive crystal-based holographic interferometry system for full-field wave propagation metrology,” Opt. Express 15(9), 5460–5472 (2007).
[CrossRef] [PubMed]

2006

J. T. Li and J. Y. Zhou, “Nonlinear optical frequency conversion with stopped short light pulses,” Opt. Express 14(7), 2811–2816 (2006).
[CrossRef] [PubMed]

X. S. Wang, Z. G. Chen, and P. G. Kevrekidis, “Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices,” Phys. Rev. Lett. 96(8), 083904 (2006).
[CrossRef] [PubMed]

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, “Wave and defect dynamics in nonlinear photonic quasicrystals,” Nature 440(7088), 1166–1169 (2006).
[CrossRef] [PubMed]

2005

L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

I. V. Mel’nikov and J. S. Aitchison, “Gap soliton memory in a resonant photonic crystal,” Appl. Phys. Lett. 87(20), 201111 (2005).
[CrossRef]

A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, “Discrete light propagation and self-trapping in liquid crystals,” Opt. Express 13(6), 1808–1815 (2005).
[CrossRef] [PubMed]

Z. G. Chen, H. Martin, E. D. Eugenieva, J. J. Xu, and J. K. Yang, “Formation of discrete solitons in light-induced photonic lattices,” Opt. Express 13(6), 1816–1826 (2005).
[CrossRef] [PubMed]

F. Fedele, J. K. Yang, and Z. G. Chen, “Defect modes in one-dimensional photonic lattices,” Opt. Lett. 30(12), 1506–1508 (2005).
[CrossRef] [PubMed]

J. Y. Zhou, H. G. Shao, J. Zhao, X. Yu, and K. S. Wong, “Storage and release of femtosecond laser pulses in a resonant photonic crystal,” Opt. Lett. 30(12), 1560–1562 (2005).
[CrossRef] [PubMed]

J. Zhu, J. Y. Zhou, and J. Cheng, “Moving and stationary spatial-temporal solitons in a resonantly absorbing Bragg reflector,” Opt. Express 13(18), 7133–7138 (2005).
[CrossRef] [PubMed]

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching,” Phys. Rev. A 72(1), 013807 (2005).
[CrossRef]

2004

A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, “Discrete propagation and spatial solitons in nematic liquid crystals,” Opt. Lett. 29(13), 1530–1532 (2004).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004).
[CrossRef] [PubMed]

2003

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[CrossRef] [PubMed]

2002

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4 Pt 2), 046602 (2002).
[CrossRef] [PubMed]

J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81(23), 4332–4334 (2002).
[CrossRef]

2001

2000

M. Blaauboer, B. A. Malomed, and G. Kurizki, “Spatiotemporally localized multidimensional solitons in self-induced transparency media,” Phys. Rev. Lett. 84(9), 1906–1909 (2000).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

M. Blaauboer, G. Kurizki, and B. A. Malomed, “Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(1 Pt A1 Pt A), R57–R59 (2000).
[CrossRef] [PubMed]

1998

A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81(17), 3647–3650 (1998).
[CrossRef]

1995

A. Kozhekin and G. Kurizki, “Self-induced transparency in Bragg reflectors: gap solitons near absorption resonances,” Phys. Rev. Lett. 74(25), 5020–5023 (1995).
[CrossRef] [PubMed]

Aitchison, J. S.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-BLOCH oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103(14), 143903 (2009).
[CrossRef] [PubMed]

I. V. Mel’nikov and J. S. Aitchison, “Gap soliton memory in a resonant photonic crystal,” Appl. Phys. Lett. 87(20), 201111 (2005).
[CrossRef]

Argyros, A.

Assanto, G.

Bartal, G.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[CrossRef] [PubMed]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98(10), 103901 (2007).
[CrossRef] [PubMed]

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, “Wave and defect dynamics in nonlinear photonic quasicrystals,” Nature 440(7088), 1166–1169 (2006).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004).
[CrossRef] [PubMed]

Bassett, I. M.

Blaauboer, M.

M. Blaauboer, G. Kurizki, and B. A. Malomed, “Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(1 Pt A1 Pt A), R57–R59 (2000).
[CrossRef] [PubMed]

M. Blaauboer, B. A. Malomed, and G. Kurizki, “Spatiotemporally localized multidimensional solitons in self-induced transparency media,” Phys. Rev. Lett. 84(9), 1906–1909 (2000).
[CrossRef] [PubMed]

Blanco, A.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Brzdakiewicz, K. A.

Busch, K.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

O. Toader, S. John, and K. Busch, “Optical trapping, field enhancement and laser cooling in photonic crystals,” Opt. Express 8(3), 217–222 (2001).
[CrossRef] [PubMed]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Chan, C. T.

L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

Chen, Y. Z.

Y. Y. Li, W. Pang, Y. Z. Chen, Z. Q. Yu, J. Y. Zhou, and H. R. Zhang, “Defect-mediated discrete solitons in optically induced photorefractive lattices,” Phys. Rev. A 80(4), 043824 (2009).
[CrossRef]

Chen, Z. G.

Cheng, J.

Christodoulides, D. N.

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98(10), 103901 (2007).
[CrossRef] [PubMed]

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, “Wave and defect dynamics in nonlinear photonic quasicrystals,” Nature 440(7088), 1166–1169 (2006).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4 Pt 2), 046602 (2002).
[CrossRef] [PubMed]

Cohen, O.

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004).
[CrossRef] [PubMed]

Corcoran, B.

de Sterke, C. M.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-BLOCH oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103(14), 143903 (2009).
[CrossRef] [PubMed]

A. Argyros, I. M. Bassett, M. A. van Eijkelenborg, M. C. J. Large, J. Zagari, N. A. P. Nicorovici, R. C. McPhedran, and C. M. de Sterke, “Ring structures in microstructured polymer optical fibres,” Opt. Express 9(13), 813–820 (2001).
[CrossRef] [PubMed]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Deubel, M.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Dignam, M. M.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-BLOCH oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103(14), 143903 (2009).
[CrossRef] [PubMed]

Dreisow, F.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Driben, R.

R. Driben and B. A. Malomed, “Stabilization of two-dimensional solitons and vortices against supercritical collapse by lattice potentials,” Eur. Phys. J. D 50(3), 317–323 (2008).
[CrossRef]

R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, “Cubic-quintic solitons in the checkerboard potential,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 2), 066604 (2007).
[CrossRef]

Ebnali-Heidari, M.

Efremidis, N. K.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4 Pt 2), 046602 (2002).
[CrossRef] [PubMed]

Eggleton, B. J.

Enkrich, C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Eugenieva, E. D.

Fedele, F.

Feng, M. N.

Y. Y. Li, B. A. Malomed, M. N. Feng, and J. Y. Zhou, “Array and checkerboard optical waveguides controlled by the electromagnetically induced transparency,” Phys. Rev. A 82(6), 063813 (2010).
[CrossRef]

Fishman, S.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[CrossRef] [PubMed]

Fleischer, J. W.

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, “Wave and defect dynamics in nonlinear photonic quasicrystals,” Nature 440(7088), 1166–1169 (2006).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4 Pt 2), 046602 (2002).
[CrossRef] [PubMed]

Fratalocchi, A.

Freedman, B.

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98(10), 103901 (2007).
[CrossRef] [PubMed]

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, “Wave and defect dynamics in nonlinear photonic quasicrystals,” Nature 440(7088), 1166–1169 (2006).
[CrossRef] [PubMed]

Garanovich, I. L.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Gibbs, H. M.

J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81(23), 4332–4334 (2002).
[CrossRef]

Grillet, C.

Gubeskys, A.

R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, “Cubic-quintic solitons in the checkerboard potential,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 2), 066604 (2007).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Heinrich, M.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Hudock, J.

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004).
[CrossRef] [PubMed]

Iyer, R.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-BLOCH oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103(14), 143903 (2009).
[CrossRef] [PubMed]

John, S.

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching,” Phys. Rev. A 72(1), 013807 (2005).
[CrossRef]

O. Toader, S. John, and K. Busch, “Optical trapping, field enhancement and laser cooling in photonic crystals,” Opt. Express 8(3), 217–222 (2001).
[CrossRef] [PubMed]

Joushaghani, A.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-BLOCH oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103(14), 143903 (2009).
[CrossRef] [PubMed]

Karpierz, M. A.

Kevrekidis, P. G.

X. S. Wang, Z. G. Chen, and P. G. Kevrekidis, “Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices,” Phys. Rev. Lett. 96(8), 083904 (2006).
[CrossRef] [PubMed]

Khitrova, G.

J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81(23), 4332–4334 (2002).
[CrossRef]

Khomeriki, R.

R. Khomeriki and J. Leon, “Driving light pulses with light in two-level media,” Phys. Rev. Lett. 99(18), 183601 (2007).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Klimonsky, S. O.

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

Knorr, A.

J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81(23), 4332–4334 (2002).
[CrossRef]

Koch, S. W.

J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81(23), 4332–4334 (2002).
[CrossRef]

Koch, W.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Kozhekin, A.

A. Kozhekin and G. Kurizki, “Self-induced transparency in Bragg reflectors: gap solitons near absorption resonances,” Phys. Rev. Lett. 74(25), 5020–5023 (1995).
[CrossRef] [PubMed]

Kozhekin, A. E.

A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81(17), 3647–3650 (1998).
[CrossRef]

Krauss, T. F.

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

Krolikowski, W.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Kuhl, J.

J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81(23), 4332–4334 (2002).
[CrossRef]

Kurizki, G.

M. Blaauboer, G. Kurizki, and B. A. Malomed, “Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(1 Pt A1 Pt A), R57–R59 (2000).
[CrossRef] [PubMed]

M. Blaauboer, B. A. Malomed, and G. Kurizki, “Spatiotemporally localized multidimensional solitons in self-induced transparency media,” Phys. Rev. Lett. 84(9), 1906–1909 (2000).
[CrossRef] [PubMed]

A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81(17), 3647–3650 (1998).
[CrossRef]

A. Kozhekin and G. Kurizki, “Self-induced transparency in Bragg reflectors: gap solitons near absorption resonances,” Phys. Rev. Lett. 74(25), 5020–5023 (1995).
[CrossRef] [PubMed]

Large, M. C. J.

Lederer, F.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[CrossRef] [PubMed]

Lee, C. K.

Leon, J.

R. Khomeriki and J. Leon, “Driving light pulses with light in two-level media,” Phys. Rev. Lett. 99(18), 183601 (2007).
[CrossRef] [PubMed]

Li, J. T.

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

J. T. Li and J. Y. Zhou, “Nonlinear optical frequency conversion with stopped short light pulses,” Opt. Express 14(7), 2811–2816 (2006).
[CrossRef] [PubMed]

Li, Y. Y.

Y. Y. Li, B. A. Malomed, M. N. Feng, and J. Y. Zhou, “Array and checkerboard optical waveguides controlled by the electromagnetically induced transparency,” Phys. Rev. A 82(6), 063813 (2010).
[CrossRef]

Y. Y. Li, W. Pang, Y. Z. Chen, Z. Q. Yu, J. Y. Zhou, and H. R. Zhang, “Defect-mediated discrete solitons in optically induced photorefractive lattices,” Phys. Rev. A 80(4), 043824 (2009).
[CrossRef]

Liang, B.

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

Lifshitz, R.

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, “Wave and defect dynamics in nonlinear photonic quasicrystals,” Nature 440(7088), 1166–1169 (2006).
[CrossRef] [PubMed]

Liou, J. D.

Liu, Y. K.

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

Longhi, S.

S. Longhi, “Bloch dynamics of light waves in helical optical waveguide arrays,” Phys. Rev. B 76(19), 195119 (2007).
[CrossRef]

Malomed, B.

A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81(17), 3647–3650 (1998).
[CrossRef]

Malomed, B. A.

Y. Y. Li, B. A. Malomed, M. N. Feng, and J. Y. Zhou, “Array and checkerboard optical waveguides controlled by the electromagnetically induced transparency,” Phys. Rev. A 82(6), 063813 (2010).
[CrossRef]

R. Driben and B. A. Malomed, “Stabilization of two-dimensional solitons and vortices against supercritical collapse by lattice potentials,” Eur. Phys. J. D 50(3), 317–323 (2008).
[CrossRef]

N.-C. Panoiu, B. A. Malomed, and R. M. Osgood, Jr., “Semidiscrete solitons in arrayed waveguide structures with Kerr nonlinearity,” Phys. Rev. A 78(1), 013801 (2008).
[CrossRef]

R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, “Cubic-quintic solitons in the checkerboard potential,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 2), 066604 (2007).
[CrossRef]

M. Blaauboer, G. Kurizki, and B. A. Malomed, “Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(1 Pt A1 Pt A), R57–R59 (2000).
[CrossRef] [PubMed]

M. Blaauboer, B. A. Malomed, and G. Kurizki, “Spatiotemporally localized multidimensional solitons in self-induced transparency media,” Phys. Rev. Lett. 84(9), 1906–1909 (2000).
[CrossRef] [PubMed]

Manela, O.

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98(10), 103901 (2007).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004).
[CrossRef] [PubMed]

Martin, H.

McPhedran, R. C.

Meisel, D. C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Mel’nikov, I. V.

I. V. Mel’nikov and J. S. Aitchison, “Gap soliton memory in a resonant photonic crystal,” Appl. Phys. Lett. 87(20), 201111 (2005).
[CrossRef]

Miklyaev, Y. V.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Minovich, A.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Mitchell, A.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Monat, C.

Neshev, D. N.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Nicorovici, N. A. P.

Nolte, S.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

O’Faolain, L.

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

Osgood, R. M.

N.-C. Panoiu, B. A. Malomed, and R. M. Osgood, Jr., “Semidiscrete solitons in arrayed waveguide structures with Kerr nonlinearity,” Phys. Rev. A 78(1), 013801 (2008).
[CrossRef]

Pang, W.

Y. Y. Li, W. Pang, Y. Z. Chen, Z. Q. Yu, J. Y. Zhou, and H. R. Zhang, “Defect-mediated discrete solitons in optically induced photorefractive lattices,” Phys. Rev. A 80(4), 043824 (2009).
[CrossRef]

Panoiu, N.-C.

N.-C. Panoiu, B. A. Malomed, and R. M. Osgood, Jr., “Semidiscrete solitons in arrayed waveguide structures with Kerr nonlinearity,” Phys. Rev. A 78(1), 013801 (2008).
[CrossRef]

Peleg, O.

O. B. Treidel, O. Peleg, and M. Segev, “Symmetry breaking in honeycomb photonic lattices,” Opt. Lett. 33, 2251–2253 (2009).
[CrossRef]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98(10), 103901 (2007).
[CrossRef] [PubMed]

Pertsch, T.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Poon, J. K. S.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-BLOCH oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103(14), 143903 (2009).
[CrossRef] [PubMed]

Prineas, J. P.

J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81(23), 4332–4334 (2002).
[CrossRef]

Schwartz, T.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[CrossRef] [PubMed]

Sears, S.

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4 Pt 2), 046602 (2002).
[CrossRef] [PubMed]

Segev, M.

O. B. Treidel, O. Peleg, and M. Segev, “Symmetry breaking in honeycomb photonic lattices,” Opt. Lett. 33, 2251–2253 (2009).
[CrossRef]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[CrossRef] [PubMed]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98(10), 103901 (2007).
[CrossRef] [PubMed]

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, “Wave and defect dynamics in nonlinear photonic quasicrystals,” Nature 440(7088), 1166–1169 (2006).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4 Pt 2), 046602 (2002).
[CrossRef] [PubMed]

Shao, H. G.

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Silberberg, Y.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[CrossRef] [PubMed]

Slesarev, A. S.

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

Sukhorukov, A. A.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Szameit, A.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Toader, O.

Treidel, O. B.

Tretyakov, Y. D.

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

Tünnermann, A.

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

van Eijkelenborg, M. A.

von Freymann, G.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

Vujic, D.

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching,” Phys. Rev. A 72(1), 013807 (2005).
[CrossRef]

Wan, J.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-BLOCH oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103(14), 143903 (2009).
[CrossRef] [PubMed]

Wang, G. P.

L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

Wang, X. S.

X. S. Wang, Z. G. Chen, and P. G. Kevrekidis, “Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices,” Phys. Rev. Lett. 96(8), 083904 (2006).
[CrossRef] [PubMed]

Wegener, M.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

White, T. P.

Wong, K. S.

L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

J. Y. Zhou, H. G. Shao, J. Zhao, X. Yu, and K. S. Wong, “Storage and release of femtosecond laser pulses in a resonant photonic crystal,” Opt. Lett. 30(12), 1560–1562 (2005).
[CrossRef] [PubMed]

Wu, K. C.

Wu, L.

L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

Xu, J. J.

Yang, J. K.

Yu, X.

Yu, Z. Q.

Y. Y. Li, W. Pang, Y. Z. Chen, Z. Q. Yu, J. Y. Zhou, and H. R. Zhang, “Defect-mediated discrete solitons in optically induced photorefractive lattices,” Phys. Rev. A 80(4), 043824 (2009).
[CrossRef]

Zagari, J.

Zhang, H. R.

Y. Y. Li, W. Pang, Y. Z. Chen, Z. Q. Yu, J. Y. Zhou, and H. R. Zhang, “Defect-mediated discrete solitons in optically induced photorefractive lattices,” Phys. Rev. A 80(4), 043824 (2009).
[CrossRef]

Zhang, P. Q.

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

Zhao, J.

Zhong, Y.

L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

Zhou, J. Y.

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

Y. Y. Li, B. A. Malomed, M. N. Feng, and J. Y. Zhou, “Array and checkerboard optical waveguides controlled by the electromagnetically induced transparency,” Phys. Rev. A 82(6), 063813 (2010).
[CrossRef]

Y. Y. Li, W. Pang, Y. Z. Chen, Z. Q. Yu, J. Y. Zhou, and H. R. Zhang, “Defect-mediated discrete solitons in optically induced photorefractive lattices,” Phys. Rev. A 80(4), 043824 (2009).
[CrossRef]

J. T. Li and J. Y. Zhou, “Nonlinear optical frequency conversion with stopped short light pulses,” Opt. Express 14(7), 2811–2816 (2006).
[CrossRef] [PubMed]

J. Y. Zhou, H. G. Shao, J. Zhao, X. Yu, and K. S. Wong, “Storage and release of femtosecond laser pulses in a resonant photonic crystal,” Opt. Lett. 30(12), 1560–1562 (2005).
[CrossRef] [PubMed]

J. Zhu, J. Y. Zhou, and J. Cheng, “Moving and stationary spatial-temporal solitons in a resonantly absorbing Bragg reflector,” Opt. Express 13(18), 7133–7138 (2005).
[CrossRef] [PubMed]

J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81(23), 4332–4334 (2002).
[CrossRef]

Zhu, J.

Zyss, J.

R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, “Cubic-quintic solitons in the checkerboard potential,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 2), 066604 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

J. T. Li, B. Liang, Y. K. Liu, P. Q. Zhang, J. Y. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, “Photonic crystal formed by the imaginary part of the refractive index,” Adv. Mater. (Deerfield Beach Fla.) 22(24), 2676–2679 (2010).
[CrossRef]

Appl. Phys. Lett.

J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81(23), 4332–4334 (2002).
[CrossRef]

L. Wu, Y. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82(8), 1284–1286 (2003).
[CrossRef]

I. V. Mel’nikov and J. S. Aitchison, “Gap soliton memory in a resonant photonic crystal,” Appl. Phys. Lett. 87(20), 201111 (2005).
[CrossRef]

Eur. Phys. J. D

R. Driben and B. A. Malomed, “Stabilization of two-dimensional solitons and vortices against supercritical collapse by lattice potentials,” Eur. Phys. J. D 50(3), 317–323 (2008).
[CrossRef]

Nature

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, “Wave and defect dynamics in nonlinear photonic quasicrystals,” Nature 440(7088), 1166–1169 (2006).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003).
[CrossRef] [PubMed]

Opt. Express

O. Toader, S. John, and K. Busch, “Optical trapping, field enhancement and laser cooling in photonic crystals,” Opt. Express 8(3), 217–222 (2001).
[CrossRef] [PubMed]

A. Argyros, I. M. Bassett, M. A. van Eijkelenborg, M. C. J. Large, J. Zagari, N. A. P. Nicorovici, R. C. McPhedran, and C. M. de Sterke, “Ring structures in microstructured polymer optical fibres,” Opt. Express 9(13), 813–820 (2001).
[CrossRef] [PubMed]

A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, “Discrete light propagation and self-trapping in liquid crystals,” Opt. Express 13(6), 1808–1815 (2005).
[CrossRef] [PubMed]

Z. G. Chen, H. Martin, E. D. Eugenieva, J. J. Xu, and J. K. Yang, “Formation of discrete solitons in light-induced photonic lattices,” Opt. Express 13(6), 1816–1826 (2005).
[CrossRef] [PubMed]

J. Zhu, J. Y. Zhou, and J. Cheng, “Moving and stationary spatial-temporal solitons in a resonantly absorbing Bragg reflector,” Opt. Express 13(18), 7133–7138 (2005).
[CrossRef] [PubMed]

J. T. Li and J. Y. Zhou, “Nonlinear optical frequency conversion with stopped short light pulses,” Opt. Express 14(7), 2811–2816 (2006).
[CrossRef] [PubMed]

J. D. Liou, C. K. Lee, and K. C. Wu, “Photorefractive crystal-based holographic interferometry system for full-field wave propagation metrology,” Opt. Express 15(9), 5460–5472 (2007).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

Y. Y. Li, B. A. Malomed, M. N. Feng, and J. Y. Zhou, “Array and checkerboard optical waveguides controlled by the electromagnetically induced transparency,” Phys. Rev. A 82(6), 063813 (2010).
[CrossRef]

N.-C. Panoiu, B. A. Malomed, and R. M. Osgood, Jr., “Semidiscrete solitons in arrayed waveguide structures with Kerr nonlinearity,” Phys. Rev. A 78(1), 013801 (2008).
[CrossRef]

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching,” Phys. Rev. A 72(1), 013807 (2005).
[CrossRef]

A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tünnermann, A. Mitchell, and Y. S. Kivshar, “Observation of diffraction-managed discrete solitons in curved waveguide arrays,” Phys. Rev. A 78(3), 031801 (2008).
[CrossRef]

Y. Y. Li, W. Pang, Y. Z. Chen, Z. Q. Yu, J. Y. Zhou, and H. R. Zhang, “Defect-mediated discrete solitons in optically induced photorefractive lattices,” Phys. Rev. A 80(4), 043824 (2009).
[CrossRef]

Phys. Rev. B

S. Longhi, “Bloch dynamics of light waves in helical optical waveguide arrays,” Phys. Rev. B 76(19), 195119 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4 Pt 2), 046602 (2002).
[CrossRef] [PubMed]

R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, “Cubic-quintic solitons in the checkerboard potential,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 2), 066604 (2007).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

M. Blaauboer, G. Kurizki, and B. A. Malomed, “Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(1 Pt A1 Pt A), R57–R59 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. Kozhekin and G. Kurizki, “Self-induced transparency in Bragg reflectors: gap solitons near absorption resonances,” Phys. Rev. Lett. 74(25), 5020–5023 (1995).
[CrossRef] [PubMed]

A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81(17), 3647–3650 (1998).
[CrossRef]

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-BLOCH oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103(14), 143903 (2009).
[CrossRef] [PubMed]

M. Blaauboer, B. A. Malomed, and G. Kurizki, “Spatiotemporally localized multidimensional solitons in self-induced transparency media,” Phys. Rev. Lett. 84(9), 1906–1909 (2000).
[CrossRef] [PubMed]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98(10), 103901 (2007).
[CrossRef] [PubMed]

R. Khomeriki and J. Leon, “Driving light pulses with light in two-level media,” Phys. Rev. Lett. 99(18), 183601 (2007).
[CrossRef] [PubMed]

X. S. Wang, Z. G. Chen, and P. G. Kevrekidis, “Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices,” Phys. Rev. Lett. 96(8), 083904 (2006).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematic diagram of (a) 1-D and (b) 2-D square-lattice RAWA. The black areas are the active media, and the white areas are the background media.

Fig. 2
Fig. 2

The α (solid line) and Δn (dashed line) of the active medium vary with the wavelength for the (a) theoretical line shape (b) experimental line shape.

Fig. 3
Fig. 3

The propagation behavior of light in the 1-D RAWA. (a) The light propagates in the background media (i.e. in the areas where V(x) = 0) for the incident wavelength at 554 nm. (b) The light propagates in the active media (i.e. in the areas where V(x) = 1) for the incident wavelength at 574 nm. The corresponding transmissions are shown in (c) and (d) for the incident wavelengths at 554 nm and 574 nm, respectively.

Fig. 4
Fig. 4

(a) The diffraction spectra of the 1-D RAWA. The different color correspond to the different thickness of the RAWA with 5 um (black), 10 um (red) and 15 um (green). (b) The η as a function of the thickness of the 1-D RAWA for the incident wavelengths at 554 nm (black), 564 nm (red) and 574 nm (green), respectively.

Fig. 5
Fig. 5

The experimental setup for the diffraction spectrum measurement of a 2-D RAWA.

Fig. 6
Fig. 6

Numerical result (dashed line) and experimental result (solid line) for the η of the 2-D RAWA.

Fig. 7
Fig. 7

The distributions of the light field with the wavelength (a) λ 1 = 547 nm and (b) λ 2 = 581 nm in the end-facet for a 2-D experimental RAWA with the sample thickness at 5 um. The insets in each figure are numerical results.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i E z = 1 2 k 2 E ( x , y ) ( k 0 Δ n + i α 2 ) V ( x , y ) E ( x , y ) .
α = A ( λ λ 0 ) 2 + B 2 ,
Δ n ( λ ) = 1 2 π 2 α ( λ ' ) 1 ( λ ' / λ ) 2 d λ ' .

Metrics