Abstract

We develop a Hamiltonian optics formalism to quantitatively analyze a recently proposed scheme for increasing the delay-time-bandwidth product for microring resonator structures with varying ring resonances [Yang and Sipe, Opt. Lett. 32, 918 (2007)]. This theory is formally compact, simple and physically intuitive. We compare this formalism with the more rigorous transfer matrix method, and conclude that the Hamiltonian optics formalism correctly gives the average dispersion, which essentially determines the group delay as well as the dispersive distortion for pulses in the ps regime or longer.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Chamorro-Posada, and F. J. Fraile-Pelaez, “Fast and slow light in zigzag microring resonator chains,” Opt. Lett. 34, 626–628 (2009).
    [CrossRef] [PubMed]
  2. C. Fietz, and G. Shvets, “Simultaneous fast and slow light in microring resonators,” Opt. Lett. 32, 3480–3482 (2007).
    [CrossRef] [PubMed]
  3. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [CrossRef]
  4. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004).
    [CrossRef] [PubMed]
  5. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optic,” J. Opt. Soc. Am. B 21, 1818–1832 (2004).
    [CrossRef]
  6. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
    [CrossRef]
  7. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. H. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett. 31, 1985–1987 (2006).
    [CrossRef] [PubMed]
  8. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, “Stopping, storing, and releasing light in quantum-well Bragg structures,” J. Opt. Soc. Am. B 22, 2144–2156 (2005).
    [CrossRef]
  9. M. F. Yanik, and S. H. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef] [PubMed]
  10. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, “Distortionless light pulse delay in quantum well Bragg structures,” Opt. Lett. 30, 2790–2792 (2005).
    [CrossRef] [PubMed]
  11. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
    [CrossRef] [PubMed]
  12. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
    [CrossRef]
  13. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef] [PubMed]
  14. Z. S. Yang, and J. E. Sipe, “Increasing the delay-time-bandwidth product for micro-ring resonator structures by varying the optical ring resonances,” Opt. Lett. 32, 918–920 (2007).
    [CrossRef] [PubMed]
  15. N. H. Kwong, J. E. Sipe, R. Binder, Z. S. Yang, and A. L. Smirl, Stopping and Storing Light in Semiconductor Quantum Wells and Optical Resonators” in Slow Light: Science and Applications (Optical Science and Engineering), J. B. Khurgin and R. S. Tucker, eds. (CRC Press, 2009).
  16. J. A. Arnaud, Beam and Fiber Optics, (Academic, 1976).
  17. P. St. J. Russell, and T. A. Birks, “Hamiltonian optics of nonuniform photonic crystals,” J. Lightwave Technol. 17, 1982–1988 (1999).
    [CrossRef]
  18. C. M. de Sterke, J. N. Bright, P. A. Krug, and T. E. Hammon, “Observation of an optical Wannier–Stark ladder,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57, 2365–2370 (1998).
    [CrossRef]
  19. G. Malpuech, A. Kavokin, G. Panzarini, and A. Di Carlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
    [CrossRef]
  20. R. Sapienzav, P. Costantino, and D. Wiersma, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
    [CrossRef]
  21. P. Chak, and J. E. Sipe, “Minimizing finite-size effects in artificial resonance tunneling structures,” Opt. Lett. 31, 2568–2570 (2006).
    [CrossRef] [PubMed]

2009 (3)

2007 (3)

2006 (3)

2005 (2)

2004 (3)

2003 (1)

R. Sapienzav, P. Costantino, and D. Wiersma, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

2001 (2)

G. Malpuech, A. Kavokin, G. Panzarini, and A. Di Carlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[CrossRef]

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

1999 (1)

1998 (1)

C. M. de Sterke, J. N. Bright, P. A. Krug, and T. E. Hammon, “Observation of an optical Wannier–Stark ladder,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57, 2365–2370 (1998).
[CrossRef]

Baba, T.

Binder, R.

Birks, T. A.

Borel, P. I.

Boyd, R. W.

Bright, J. N.

C. M. de Sterke, J. N. Bright, P. A. Krug, and T. E. Hammon, “Observation of an optical Wannier–Stark ladder,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57, 2365–2370 (1998).
[CrossRef]

Chak, P.

Chamorro-Posada, P.

Costantino, P.

R. Sapienzav, P. Costantino, and D. Wiersma, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

de Sterke, C. M.

C. M. de Sterke, J. N. Bright, P. A. Krug, and T. E. Hammon, “Observation of an optical Wannier–Stark ladder,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57, 2365–2370 (1998).
[CrossRef]

Di Carlo, A.

G. Malpuech, A. Kavokin, G. Panzarini, and A. Di Carlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[CrossRef]

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Fage-Pedersen, J.

Fan, S. H.

Fietz, C.

Fraile-Pelaez, F. J.

Frandsen, L. H.

Gao, D.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Hamachi, Y.

Hammon, T. E.

C. M. de Sterke, J. N. Bright, P. A. Krug, and T. E. Hammon, “Observation of an optical Wannier–Stark ladder,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57, 2365–2370 (1998).
[CrossRef]

Hao, R.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Heebner, J. E.

Hou, J.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Huang, Y.

Kavokin, A.

G. Malpuech, A. Kavokin, G. Panzarini, and A. Di Carlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[CrossRef]

Krug, P. A.

C. M. de Sterke, J. N. Bright, P. A. Krug, and T. E. Hammon, “Observation of an optical Wannier–Stark ladder,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57, 2365–2370 (1998).
[CrossRef]

Kubo, S.

Kwong, N. H.

Lavrinenko, A. V.

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Malpuech, G.

G. Malpuech, A. Kavokin, G. Panzarini, and A. Di Carlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[CrossRef]

Mookherjea, S.

Paloczi, G. T.

Panzarini, G.

G. Malpuech, A. Kavokin, G. Panzarini, and A. Di Carlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[CrossRef]

Pereira, S.

Poon, J. K. S.

Povinelli, M. L.

Russell, P. St. J.

Sandhu, S.

Sapienzav, R.

R. Sapienzav, P. Costantino, and D. Wiersma, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

Scheuer, J.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

Shvets, G.

Sipe, J. E.

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Smirl, A. L.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

Wiersma, D.

R. Sapienzav, P. Costantino, and D. Wiersma, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

Wu, H.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

Yang, Z. S.

Yanik, M. F.

Yariv, A.

Zhou, Z.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. B (1)

G. Malpuech, A. Kavokin, G. Panzarini, and A. Di Carlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

C. M. de Sterke, J. N. Bright, P. A. Krug, and T. E. Hammon, “Observation of an optical Wannier–Stark ladder,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57, 2365–2370 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

R. Sapienzav, P. Costantino, and D. Wiersma, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

M. F. Yanik, and S. H. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Other (2)

N. H. Kwong, J. E. Sipe, R. Binder, Z. S. Yang, and A. L. Smirl, Stopping and Storing Light in Semiconductor Quantum Wells and Optical Resonators” in Slow Light: Science and Applications (Optical Science and Engineering), J. B. Khurgin and R. S. Tucker, eds. (CRC Press, 2009).

J. A. Arnaud, Beam and Fiber Optics, (Academic, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a SCISSOR unit.

Fig. 2
Fig. 2

Photonic band structure of the periodic SCISSOR system.

Fig. 3
Fig. 3

Schematic of: (a) an inclined SCISSOR structure with varying ring resonances; (b) an AR block; (c) a finite SCISSOR sequence with AR blocks on both ends.

Fig. 4
Fig. 4

The simulation results from the Hamiltonian optics formalism: (a) K as a function of t; (b) K as a function of z; (c) z as a function of t.

Fig. 5
Fig. 5

Delay time as a function of frequency: the Hamiltonian delay τHam for the inclined structure (dashed), the actual delay τ for the inclined structure (solid), and the actual delay for the uniformly periodic structure (dotted).

Fig. 8
Fig. 8

Time dependence of pulse intensities: the input (dotted), transmitted in the 10-unit-cell uniformly periodic system (dashed), reflected in the 10-unit-cell inclined system (solid), transmitted in the 100-unit-cell uniformly periodic system (dash-dotted), and Eout,Ham(t) in Eq. (34) (filled triangles, almost indistinguishable from the solid curve).

Fig. 6
Fig. 6

Reflection of the inclined structure (solid) and transmission of the uniformly periodic structure (dashed).

Fig. 7
Fig. 7

Phase of the reflectivity in the inclined structure: the Hamiltonian phase ϕHam (solid) and the actual phase ϕ (dashed).

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

( E 3 up / low E 2 up / low ) = ( σ i κ i κ σ ) ( E 4 up / low E 1 up / low ) ,
( E R + E R ) = M ( ω ) ( E L + E L ) , M ( ω ) = ( α β β α ) ,
α = e i π ω ω B 2 i σ sin ( π ω ω r ) [ e i π ω ω r σ 2 e i π ω ω r ] , β = κ 2 2 i σ sin ( π ω ω r ) .
cos ( K L ) = 1 2 T r { M ( ω ) } = { α } ,
ω B = 2 π × 1.973 THz , ω r = 2 π × 3.942 THz , σ = 0 . 97 ; m r = 50 , m B = 100 .
α = e i π ω ω B { 1 i Γ m r m r ω r ω m r ω r } ,
ω ( K ) = cos ( K L ) ( 1 ) m B cos ( K L ) ( 1 ) m B ( 1 + π m B m r Γ ) ( m r ω r m B ω B ) + m B ω B .
ω = g ( K ; z ) .
d z d t = g ( K ; z ) K ,
d K d t = g ( K ; z ) z .
g ( K ; z ) = cos ( K L ) ( 1 ) m B cos ( K L ) ( 1 ) m B ( 1 + π m B m r Γ ) [ m r ω r ( z ) m B ω B ] + m B ω B ,
m r ω r , j = m r ω r + ( j 1 ) × m B ω B m r ω r N ,
m r ω r ( z ) = m r ω r + ( z L ) × m B ω B m r ω r N L ,
d z d t = Δ Ω N ( 1 ) m B + 1 π m B m r Γ sin ( K L ) [ cos ( K L ) ( 1 ) m B ( 1 + π m B m r Γ ) ] 2 [ z ( N + 1 ) L ] ,
d K d t = Δ Ω N L cos ( K L ) ( 1 ) m B cos ( K L ) ( 1 ) m B ( 1 + π m B m r Γ ) ,
Δ Ω N t = [ K L ( 1 ) m B π m B m r Γ ( tan K L 2 ) ( 1 ) m B + 1 ] [ K 0 L ( 1 ) m B π m B m r Γ ( tan K 0 L 2 ) ( 1 ) m B + 1 ] ,
d K d z = ( 1 ) m B + 1 [ cos ( K L ) ( 1 ) m B ( 1 + π m B m r Γ ) ] [ cos ( K L ) ( 1 ) m B ] π m B m r Γ L sin ( K L ) 1 z ( N + 1 ) L ,
z L = 1 + N { 1 cos ( K 0 L ) ( 1 ) m B cos ( K 0 L ) ( 1 ) m B ( 1 + π m B m r Γ ) cos ( K 0 L ) ( 1 ) m B ( 1 + π m B m r Γ ) cos ( K L ) ( 1 ) m B } .
50 ω r , j = 50 ω r + ( j 1 ) ( 100 ω B 50 ω r ) / 12 ,
f ( K ) = Δ Ω N L cos ( K L ) ( 1 ) m B cos ( K L ) ( 1 ) m B ( 1 + π m B m r Γ ) .
τ Ham = N Δ Ω [ ( K 0 L 2 π ) ( 1 ) m B π m B m R Γ ( tan K 0 L 2 π 2 ) ( 1 ) m B + 1 ] [ K 0 L ( 1 ) m B π m B m R Γ ( tan K 0 L 2 ) ( 1 ) m B + 1 ] = 2 N ( Δ Ω ) [ K 0 L ( 1 ) m B π m B m R Γ ( tan K 0 L 2 ) ( 1 ) m B + 1 + π ] .
M ( ω ) = ( M 11 M 12 M 21 M 22 ) ,
r = M 21 M 22 , t = det M M 22 ,
( E R + E R ) = M a r ( E L + E L )
M a r = 1 i κ a r [ exp { i 1 2 π ( ω ω r , R a r + ω ω r , L a r ) } , σ a r exp { i 1 2 π ( ω ω r , R a r ω ω r , L a r ) } σ a r exp { i 1 2 π ( ω ω r , R a r ω ω r , L a r ) } , exp { i 1 2 π ( ω ω r , R a r + ω ω r , L a r ) } ] .
ω r , L a r = c n r R a r , L , ω r , R a r = c n r R a r , R ,
M uni , tot ( ω ) = M a r , B ( ω ) M uni N s ( ω ) M a r , A ( ω ) .
M inc , tot ( ω ) = M a r , B ( ω ) M N s ( ω ) M N s 1 ( ω ) M 1 ( ω ) M a r , A ( ω ) ,
ω r , L a r = 2 π × 3.942 THz , ω r , R a r = 2 π × 3.866 THz , σ a r = 0.42 ,
d ϕ Ham d ω = τ Ham = 2 N ( Δ Ω ) [ K 0 L ( 1 ) m B π m B m R Γ ( tan K 0 L 2 ) ( 1 ) m B + 1 + π ] .
E in ( ω ) = 1 π δ ω exp ( ( ω ω 0 ) 2 δ ω 2 ) exp [ i ( ω ω 0 ) t 0 ] ,
E in ( t ) = d ω E in exp ( i ω t ) .
E out , T ( t ) = d ω E in ( ω ) exp [ i ϕ ( ω ) ] exp ( i ω t ) .
E out , Ham ( t ) = d ω E in ( ω ) exp [ i ϕ Ham ( ω ) ] exp ( i ω t ) .

Metrics