Abstract

We report what we believe is the first experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet. A specially designed sample stage consisting of a multilayered sandwich of glass, solid polydimethylsiloxane (PDMS), and liquid PDMS, permitted the precise positioning of a gold nanoparticle of diameter between 50 and 100 nm within the nanojet emitted by a 4.4 μm diameter BaTiO3 microsphere embedded within the PDMS. We determined that, when the gold nanoparticle is optimally positioned within the nanojet, the backscattering of the microsphere can greatly increase: for example, by 3:1 (200%) for the 50 nm gold nanoparticle. The increased backscattering is strongly dependent upon the illumination wavelength and the numerical aperture of the imaging system, and occurs for nonresonant illuminations of the isolated microsphere. Low objective numerical apertures of approximately 0.075 yield the maximum observed increases in backscattering. The measured data agree well with numerical calculations incorporating Mie-based theory and Fourier optics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [CrossRef] [PubMed]
  2. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
    [CrossRef] [PubMed]
  3. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
    [CrossRef] [PubMed]
  4. A. V. Itagi and W. A. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22(12), 2847–2858 (2005).
    [CrossRef]
  5. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008).
    [CrossRef] [PubMed]
  6. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
    [CrossRef] [PubMed]
  7. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun 2, 218 (2011), doi:.
    [CrossRef] [PubMed]
  8. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [CrossRef] [PubMed]
  9. Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
    [CrossRef] [PubMed]
  10. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
    [CrossRef]
  11. L. Zhao and C. K. Ong, “Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies,” J. Appl. Phys. 105(12), 123512 (2009).
    [CrossRef]
  12. S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92(21), 211102 (2008).
    [CrossRef]
  13. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
    [CrossRef] [PubMed]
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  15. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34(21), 4573–4588 (1995).
    [CrossRef] [PubMed]
  16. Y. L. Xu, “Scattering mueller matrix of an ensemble of variously shaped small particles,” J. Opt. Soc. Am. A 20(11), 2093–2105 (2003).
    [CrossRef]

2011 (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun 2, 218 (2011), doi:.
[CrossRef] [PubMed]

2010 (1)

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[CrossRef] [PubMed]

2009 (1)

L. Zhao and C. K. Ong, “Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies,” J. Appl. Phys. 105(12), 123512 (2009).
[CrossRef]

2008 (4)

2006 (2)

Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006).
[CrossRef] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[CrossRef]

2005 (3)

2004 (1)

2003 (1)

1995 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Backman, V.

Bonod, N.

Challener, W. A.

Chen, Z.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Devilez, A.

Ferrand, P.

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun 2, 218 (2011), doi:.
[CrossRef] [PubMed]

Heifetz, A.

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92(21), 211102 (2008).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[CrossRef]

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun 2, 218 (2011), doi:.
[CrossRef] [PubMed]

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[CrossRef]

Itagi, A. V.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun 2, 218 (2011), doi:.
[CrossRef] [PubMed]

Kong, S.-C.

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92(21), 211102 (2008).
[CrossRef]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[CrossRef] [PubMed]

Lecler, S.

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun 2, 218 (2011), doi:.
[CrossRef] [PubMed]

Li, X.

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun 2, 218 (2011), doi:.
[CrossRef] [PubMed]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun 2, 218 (2011), doi:.
[CrossRef] [PubMed]

Meyrueis, P.

Ong, C. K.

L. Zhao and C. K. Ong, “Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies,” J. Appl. Phys. 105(12), 123512 (2009).
[CrossRef]

Pianta, M.

Popov, E.

Rigneault, H.

Sahakian, A.

Sahakian, A. V.

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92(21), 211102 (2008).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[CrossRef]

Stout, B.

Taflove, A.

Takakura, Y.

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun 2, 218 (2011), doi:.
[CrossRef] [PubMed]

Wenger, J.

Xu, Y. L.

Zhao, L.

L. Zhao and C. K. Ong, “Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies,” J. Appl. Phys. 105(12), 123512 (2009).
[CrossRef]

ACS Nano (1)

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[CrossRef]

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92(21), 211102 (2008).
[CrossRef]

J. Appl. Phys. (1)

L. Zhao and C. K. Ong, “Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies,” J. Appl. Phys. 105(12), 123512 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nat Commun (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun 2, 218 (2011), doi:.
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the BaTiO3 microsphere – gold nanoparticle sample platform.

Fig. 2
Fig. 2

Normalized incremental backscattering intensity enhancement δI vs. wavelength for the idealized BaTiO3 microsphere / gold nanoparticle system.

Fig. 3
Fig. 3

Optical imaging detection scheme which performs a Fourier transformation of the collimated scattered fields from the microsphere / nanoparticle system.

Fig. 4
Fig. 4

Comparison of experimental (a) and computed (b) images of two 4.3 μm diameter polystyrene microspheres for NA = 0.6 and wavelengths between 400 nm and 700 nm.

Fig. 5
Fig. 5

Comparison of two experimental visible-light backscattering images: (a) isolated 4.4 μm diameter BaTiO3 microsphere in PDMS; (b) microsphere of (a) with a 100 nm gold nanoparticle located 350 nm above the microsphere within its nanojet. 5X magnification and NA = 0.12.

Fig. 6
Fig. 6

(a) Computationally modeled NA dependence of the backscattering intensity enhancement caused by a 100-nm gold nanoparticle for the broadband illumination case of Fig. 5. (b) Typical monochromatic scattering intensity of the microsphere vs. scattering angle θ.

Fig. 7
Fig. 7

(a) Measured backscattering spectral responses of the 4.4 μm diameter BaTiO3 microsphere with and without the nearby perturbing 100 nm diameter gold nanoparticle for an objective NA = 0.12. (b) Spectral response of the backscattering enhancement based upon the data of (a).

Fig. 8
Fig. 8

Measured and modeled backscattering intensity enhancements as a function of the gold nanoparticle diameter.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ I         Δ I I μ     =     I μ + ν     I μ I μ
( E θ s E ϕ s )     =     e i k r i k r   S [ cos ϕ sin ϕ sin ϕ cos ϕ ] ( E x i E y i )
( E x c E y c )     =     [ cos ϕ sin ϕ sin ϕ cos ϕ ] ( E θ s E ϕ s )
( E X o E Y o )   =   F . T . { E x c E y c }

Metrics