Abstract

A novel light-controllable long-period fiber grating (LPFG) is demonstrated by making use of a PCF infiltrated with a photoresponsive liquid crystal (LC) mixture consisting of nematic LC molecules and light-sensitive 4-methoxyazobenzene (4MAB). With the aid of the photo-induced isomerization of 4MAB, the refractive index of the LC mixture can be modulated and the periodic index perturbation along the fiber can be achieved by exposing the PCF to a blue laser through a mask. The resonance wavelength and dip depth of the LPFG can be controlled by using different blue-laser irradiation time, numbers of period, and 4MAB concentrations. In addition, the photo-induced LPFG is erasable under green-laser illumination.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  2. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24(21), 1460–1462 (1999).
    [Crossref]
  3. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, “Structural long-period gratings in photonic crystal fibers,” Opt. Lett. 27(12), 1013–1015 (2002).
    [Crossref]
  4. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008).
    [Crossref] [PubMed]
  5. G. Humbert, A. Malki, S. Fvrier, P. Roy, and D. Pagnoux, “Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber,” Opt. Lett. 29(1), 38–40 (2004).
    [Crossref] [PubMed]
  6. J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25(5), 1306–1312 (2007).
    [Crossref]
  7. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves,” Opt. Lett. 25(20), 1499–1501 (2000).
    [Crossref]
  8. D. I. Yeom, H. C. Park, I. K. Hwang, and B. Y. Kim, “Tunable gratings in a hollow-core photonic bandgap fiber based on acousto-optic interaction,” Opt. Express 17(12), 9933–9939 (2009).
    [Crossref] [PubMed]
  9. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29(4), 331–333 (2004).
    [Crossref] [PubMed]
  10. T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
    [Crossref]
  11. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express 14(7), 3007–3014 (2006).
    [Crossref] [PubMed]
  12. D. I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express 15(6), 3513–3518 (2007).
    [Crossref] [PubMed]
  13. C. P. Chen and C. P. Yu, “Long-period fiber gratings based on liquid-filled photonic crystal fibers,” Proc. SPIE 7609, 760911, 760911-8 (2010).
    [Crossref]
  14. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007).
    [Crossref] [PubMed]
  15. L. Wei, J. Weirich, T. T. Alkeskjold, and A. Bjarklev, “On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers,” Opt. Lett. 34(24), 3818–3820 (2009).
    [Crossref] [PubMed]
  16. V. K. Hsiao and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008).
    [PubMed]
  17. H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
    [Crossref]
  18. C. R. Lee, J. D. Lin, B. Y. Huang, T. S. Mo, and S. Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
    [Crossref] [PubMed]

2010 (2)

2009 (2)

2008 (2)

2007 (3)

2006 (2)

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express 14(7), 3007–3014 (2006).
[Crossref] [PubMed]

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
[Crossref]

2004 (2)

2003 (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

2002 (1)

2000 (1)

1999 (1)

1998 (1)

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Aizawa, M.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Alkeskjold, T. T.

Bennion, I.

Birks, T. A.

Bjarklev, A.

Chen, C. P.

C. P. Chen and C. P. Yu, “Long-period fiber gratings based on liquid-filled photonic crystal fibers,” Proc. SPIE 7609, 760911, 760911-8 (2010).
[Crossref]

Diez, A.

Dobb, H.

Eggleton, B. J.

Fujisawa, T.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Fvrier, S.

Ho, H. L.

Hsiao, V. K.

Huang, B. Y.

Huang, S. Y.

Humbert, G.

Hwang, I. K.

Ikeda, T.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Iredale, T. B.

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
[Crossref]

Jin, W.

Ju, J.

Kakarantzas, G.

Kalli, K.

Kanazawa, A.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Kim, B. Y.

Kim, J. C.

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Ko, C. Y.

Kuhlmey, B. T.

Lægsgaard, J.

Lee, B.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Lee, B. H.

Lee, C. R.

Lee, H. K.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Lee, K. S.

Lim, J. H.

Lim, S. D.

Lin, J. D.

Mägi, E. C.

Malki, A.

Mangan, B. J.

Mezentsev, V. K.

Mo, T. S.

Moore, E. D.

Noordegraaf, D.

Pagnoux, D.

Park, H. C.

Petrovic, J. S.

Reeves, W. H.

Rindorf, L.

Roy, P.

Russell, P. St. J.

Scolari, L.

Shiono, T.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Spälter, S.

Steinvurzel, P.

Strasser, T. A.

Wang, D.

Wang, Y.

Webb, D. J.

Wei, L.

Weirich, J.

Westbrook, P. S.

Windeler, R. S.

Xiao, L.

Xuan, H.

Yeom, D. I.

Yu, C. P.

C. P. Chen and C. P. Yu, “Long-period fiber gratings based on liquid-filled photonic crystal fibers,” Proc. SPIE 7609, 760911, 760911-8 (2010).
[Crossref]

Chem. Mater. (1)

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Electron. Lett. (1)

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
[Crossref]

J. Lightwave Technol. (1)

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (6)

Proc. SPIE (1)

C. P. Chen and C. P. Yu, “Long-period fiber gratings based on liquid-filled photonic crystal fibers,” Proc. SPIE 7609, 760911, 760911-8 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of the reversible photo-induced phase transformation of the photoresponsive LC mixture in a capillary.

Fig. 2
Fig. 2

(a) Fabrication and measurement setup for the photo-induced LPFG in the PLCF. The polarized microscope images of the LPFG as the axis of the PCLF was placed (b) 0° and (c) 45°with respect to the polarizer.

Fig. 3
Fig. 3

Transmission spectra of the photo-induced LPFG with variant blue-laser irradiation time and the erased LPFG by the green laser.

Fig. 4
Fig. 4

(a) Transmission spectra of the photo-induced LPFGs for variant numbers of period. (b) The dip depth versus the number of period.

Fig. 5
Fig. 5

(a) Transmission spectra of the photo-induced LPFGs for variant concentrations of photoresponsive 4MAB. (b) The resonance wavelength versus the 4MAB concentration.

Metrics