Abstract

An integration of fiber-to-the-home (FTTH) and graded-index plastic optical fiber (GI-POF) in-house networks based on injection-locked vertical cavity surface emitting lasers (VCSELs) and direct-detection technique is proposed and experimentally demonstrated. Sufficient low bit error rate (BER) values were obtained over a combination of 20-km single-mode fiber (SMF) and 50-m GI-POF links. Signal qualities satisfy the worldwide interoperability for microwave access (WiMAX) requirement with data signals of 20Mbps/5.8GHz and 70Mbps/10GHz, respectively. Since our proposed network does not use sophisticated and expensive RF devices in premises, it reveals a prominent one with simpler and more economic advantages. Our proposed architecture is suitable for the SMF-based primary and GI-POF-based in-house networks.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Tsai, H. L. Ma, H. H. Lu, Y. P. Lin, H. Y. Chen, and S. C. Yan, “Bidirectional direct modulation CATV and phase remodulation radio-over-fiber transport systems,” Opt. Express 18(25), 26077–26083 (2010).
    [CrossRef] [PubMed]
  2. C. H. Chang, P. C. Peng, H. H. Lu, C. L. Shih, and H. W. Chen, “Simplified radio-over-fiber transport systems with a low-cost multiband light source,” Opt. Lett. 35(23), 4021–4023 (2010).
    [CrossRef] [PubMed]
  3. C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport system,” Opt. Express 17(24), 22246–22253 (2009).
    [CrossRef] [PubMed]
  4. A. Polley, P. J. Decker, J. H. Kim, and S. E. Ralph, “Plastic optical fiber links: a statistical study,” presented at Opt. Fiber Commun (OFC), San Diego, CA, USA, (2009).
  5. A. Polley, P. J. Decker, and S. E. Ralph, “10 Gb/s, 850 nm VCSEL based large core POF links,” presented at Conf. on Lasers and Electro-Optics (CLEO), San Jose, California, (2008).
  6. H. Yang, S. C. Lee, E. Tangdiongga, F. Breyer, S. Randel, and A. M. J. Koonen, “40-Gb/s transmission over 100m graded-index plastic optical fiber based on discrete multitone modulation,” Opt. Fiber. Commun. (OFC) PDPD8 (2009).
  7. J. Yu, D. Qian, M. Huang, Z. Jia, G. K. Chang, and T. Wang, “16Gbit/s radio OFDM signals over graded-index plastic optical fiber,” European. Conf. on Opt. Commun. (ECOC) 5–237, 6.16 (2008).
  8. M. Asai, R. Hirose, A. Kondo, and Y. Koike, ““High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” IEEE/OSA J. Lightw. Technol. 25(10), 3062–3067 (2007).
    [CrossRef]
  9. Y. Song, X. Zheng, W. Wang, H. Zhang, and B. Zhou, “All-optical broadband phase modulation of a subcarrier in a radio over fiber system,” Opt. Lett. 31(22), 3234–3236 (2006).
    [CrossRef] [PubMed]
  10. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
    [CrossRef]
  11. C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
    [CrossRef]
  12. H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
    [CrossRef]
  13. H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16(8), 1942–1944 (2004).
    [CrossRef]
  14. H. J. R. Dutton, Understanding Optical Communications (Prentice Hall PTR, 1998) pp. 61–62.
  15. A. M. J. Koonen, A. Ng’oma, M. G. Larrode, F. M. Huijskens, I. T. Monroy, and G. D. Khoe, “Novel cost-efficient techniques for microwave signal delivery in fibre-wireless networks,” European. Conf. on Opt. Commun. (ECOC) 1, 1.1 (2004).

2010 (2)

2009 (1)

2007 (2)

M. Asai, R. Hirose, A. Kondo, and Y. Koike, ““High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” IEEE/OSA J. Lightw. Technol. 25(10), 3062–3067 (2007).
[CrossRef]

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

2006 (1)

2004 (1)

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16(8), 1942–1944 (2004).
[CrossRef]

2003 (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

2002 (1)

C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[CrossRef]

Asai, M.

M. Asai, R. Hirose, A. Kondo, and Y. Koike, ““High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” IEEE/OSA J. Lightw. Technol. 25(10), 3062–3067 (2007).
[CrossRef]

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Chang, C. H.

Chang-Hasnain, C. J.

C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[CrossRef]

Chen, H. W.

Chen, H. Y.

Chen, K. J.

Choi, W. Y.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16(8), 1942–1944 (2004).
[CrossRef]

Chow, W. W.

C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[CrossRef]

Chrostowski, L.

C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[CrossRef]

Hirose, R.

M. Asai, R. Hirose, A. Kondo, and Y. Koike, ““High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” IEEE/OSA J. Lightw. Technol. 25(10), 3062–3067 (2007).
[CrossRef]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Koike, Y.

M. Asai, R. Hirose, A. Kondo, and Y. Koike, ““High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” IEEE/OSA J. Lightw. Technol. 25(10), 3062–3067 (2007).
[CrossRef]

Kondo, A.

M. Asai, R. Hirose, A. Kondo, and Y. Koike, ““High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” IEEE/OSA J. Lightw. Technol. 25(10), 3062–3067 (2007).
[CrossRef]

Lau, E. K.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

Lin, Y. P.

Lu, H. H.

Ma, H. L.

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Peng, P. C.

Ryu, H. S.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16(8), 1942–1944 (2004).
[CrossRef]

Seo, Y. K.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16(8), 1942–1944 (2004).
[CrossRef]

Shih, C. L.

Song, Y.

Su, H. S.

Sung, H. K.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

Tsai, W. S.

Wang, W.

Wu, M. C.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

Yan, S. C.

Zhang, H.

Zheng, X.

Zhou, B.

IEEE J. Quantum Electron. (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[CrossRef]

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16(8), 1942–1944 (2004).
[CrossRef]

IEEE/OSA J. Lightw. Technol. (1)

M. Asai, R. Hirose, A. Kondo, and Y. Koike, ““High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” IEEE/OSA J. Lightw. Technol. 25(10), 3062–3067 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (6)

H. J. R. Dutton, Understanding Optical Communications (Prentice Hall PTR, 1998) pp. 61–62.

A. M. J. Koonen, A. Ng’oma, M. G. Larrode, F. M. Huijskens, I. T. Monroy, and G. D. Khoe, “Novel cost-efficient techniques for microwave signal delivery in fibre-wireless networks,” European. Conf. on Opt. Commun. (ECOC) 1, 1.1 (2004).

A. Polley, P. J. Decker, J. H. Kim, and S. E. Ralph, “Plastic optical fiber links: a statistical study,” presented at Opt. Fiber Commun (OFC), San Diego, CA, USA, (2009).

A. Polley, P. J. Decker, and S. E. Ralph, “10 Gb/s, 850 nm VCSEL based large core POF links,” presented at Conf. on Lasers and Electro-Optics (CLEO), San Jose, California, (2008).

H. Yang, S. C. Lee, E. Tangdiongga, F. Breyer, S. Randel, and A. M. J. Koonen, “40-Gb/s transmission over 100m graded-index plastic optical fiber based on discrete multitone modulation,” Opt. Fiber. Commun. (OFC) PDPD8 (2009).

J. Yu, D. Qian, M. Huang, Z. Jia, G. K. Chang, and T. Wang, “16Gbit/s radio OFDM signals over graded-index plastic optical fiber,” European. Conf. on Opt. Commun. (ECOC) 5–237, 6.16 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The schematic diagram of the integrated FTTH and GI-POF in-house networks over a combination of 20-km SMF and 50-m GI-POF transport.

Fig. 2
Fig. 2

FTTH applications/at the premises.

Fig. 3
Fig. 3

(a) The optical spectrum of directly modulated VCSEL1 (DSB format). (b) The optical spectrum of injection-locked VCSEL1 locked at λ3. (c) The optical signal exhibits only one optical sideband (upper sideband, λ3) for direct-detection.

Fig. 4
Fig. 4

(a) The measured BER curves of 20 Mbps/5.8 GHz data channel (VCSEL1). (b) The measured BER curves of 70 Mbps/10 GHz data channel (VCSEL2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω R 2 = ω R 0 2 + k 2 ( A i n j A 0 ) 2 sin 2 φ 0
D i s p e r s i o n t i m e = N A 2 × L 2 n c

Metrics