Abstract

Recently, a tunable bandwidth white light cavity (WLC) was demonstrated by using an anomalously dispersive intra-cavity medium to adjust a cavity linewidth without reducing the cavity buildup factor [G.S. Pati et al., Phys. Rev. Lett. 99, 133601 (2007)]. In this paper, we show theoretically how such a WLC can be used to realize a distortion-free delay system for a data pulse. The system consists of two WLCs placed in series. Once the pulse has passed through them, the fast-light media in both WLCs are deactivated, so that each of these now acts as a very high reflectivity mirror. The data pulse bounces around between these mirrors, undergoing negligible attenuation per pass. The trapped pulse can be released by activating the fast-light medium in either WLC. Numerical simulations show that such a system can far exceed the delay-bandwidth constraint encountered in a typical data buffer employing slow light. We also show that the pulse remains virtually undistorted during the process.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  2. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
    [CrossRef] [PubMed]
  3. R. Kolesov, “Coherent population trapping in a crystalline solid at room temperature,” Phys. Rev. A 72(5), 051801 (2005).
    [CrossRef]
  4. M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28(10), 831–833 (2003).
    [CrossRef] [PubMed]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [CrossRef] [PubMed]
  6. P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
    [CrossRef]
  7. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [CrossRef] [PubMed]
  8. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
    [CrossRef] [PubMed]
  9. K. Y. Song and M. G. Herráez, “L and Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 12, 82–88 (2005).
    [CrossRef]
  10. K. Y. Song, K. S. Abedin, and K. Hotate, “Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering,” Opt. Express 16(1), 225–230 (2008).
    [CrossRef] [PubMed]
  11. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As(2)Se(3) chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006).
    [CrossRef] [PubMed]
  12. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  13. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
    [CrossRef]
  14. Z. J. Deng, D. K. Qing, P. R. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96(2), 023602 (2006).
    [CrossRef] [PubMed]
  15. B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gbit/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
    [CrossRef]
  16. Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066616 (2003).
    [CrossRef]
  17. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [CrossRef] [PubMed]
  18. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
    [CrossRef] [PubMed]
  19. R. W. Boyd, and D. J. Gauthier, “Slow and fast light,” in Progress in Optics: Volume 43, E. Wolf, ed. (Elsevier, Amsterdam, 2002), Chap. 6.
  20. Note that ng(WLC) is different from ng: the latter (ng) epresents the group index of the medium inside the WLC, while the former (ng(WLC)) represents an effective group index of the WLC as a whole, including the cavity mirrors. Similarly, vg(WLC) is the effective group velocity for the WLC as a whole, while vgis the group velocity of the material inside the WLC.
  21. H. N. Yum, Y. J. Jang, and M. S. Shahriar, “Pulse propagation through a dispersive intracavity medium,” http://arxiv.org/abs/1012.4483 .
  22. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
    [CrossRef] [PubMed]
  23. H. N. Yum, Y. J. Jang, M. E. Kim, and M. S. Shahriar, “Pulse delay via tunable white light cavities using fiber optic resonators,” http://arxiv.org/abs/1012.5482 .
  24. E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
    [CrossRef]

2008 (2)

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

K. Y. Song, K. S. Abedin, and K. Hotate, “Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering,” Opt. Express 16(1), 225–230 (2008).
[CrossRef] [PubMed]

2007 (2)

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[CrossRef] [PubMed]

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gbit/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

2006 (3)

Z. J. Deng, D. K. Qing, P. R. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96(2), 023602 (2006).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As(2)Se(3) chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006).
[CrossRef] [PubMed]

2005 (7)

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[CrossRef] [PubMed]

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
[CrossRef]

R. Kolesov, “Coherent population trapping in a crystalline solid at room temperature,” Phys. Rev. A 72(5), 051801 (2005).
[CrossRef]

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

K. Y. Song and M. G. Herráez, “L and Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 12, 82–88 (2005).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

2003 (3)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066616 (2003).
[CrossRef]

M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28(10), 831–833 (2003).
[CrossRef] [PubMed]

2002 (1)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

2000 (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[CrossRef] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Abedin, K. S.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Blumenthal, D. J.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

Bowers, J. E.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Burmeister, E. F.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

Chang-Hasnain, C. J.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[CrossRef]

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
[CrossRef]

Chuang, S. L.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[CrossRef]

Crankshaw, S.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[CrossRef]

Deng, Z. J.

Z. J. Deng, D. K. Qing, P. R. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96(2), 023602 (2006).
[CrossRef] [PubMed]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[CrossRef] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066616 (2003).
[CrossRef]

Fazal, I.

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gbit/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

Gaeta, A. L.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

González Herráez, M.

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hemmer, P. R.

Z. J. Deng, D. K. Qing, P. R. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96(2), 023602 (2006).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

Herráez, M. G.

K. Y. Song and M. G. Herráez, “L and Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 12, 82–88 (2005).
[CrossRef]

Hotate, K.

Kim, E. T.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[CrossRef]

Kolesov, R.

R. Kolesov, “Coherent population trapping in a crystalline solid at room temperature,” Phys. Rev. A 72(5), 051801 (2005).
[CrossRef]

Ku, P. C.

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[CrossRef] [PubMed]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Moewe, M.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[CrossRef]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Okawachi, Y.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Ooi, C. H. R.

Z. J. Deng, D. K. Qing, P. R. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96(2), 023602 (2006).
[CrossRef] [PubMed]

Palinginis, P.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[CrossRef]

Pati, G. S.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[CrossRef] [PubMed]

Phillips, M.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Qing, D. K.

Z. J. Deng, D. K. Qing, P. R. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96(2), 023602 (2006).
[CrossRef] [PubMed]

Salit, K.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[CrossRef] [PubMed]

Salit, M.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[CrossRef] [PubMed]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Scully, M. O.

Z. J. Deng, D. K. Qing, P. R. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96(2), 023602 (2006).
[CrossRef] [PubMed]

Sedgwick, F.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[CrossRef]

Shahriar, M. S.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Song, K. Y.

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

Thévenaz, L.

Tucker, R. S.

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Wang, H.

Wang, H. L.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[CrossRef]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066616 (2003).
[CrossRef]

Willner, A. E.

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gbit/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Yan, L.-S.

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gbit/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

Yang, J.-Y.

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gbit/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

Zhang, B.

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gbit/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Zubairy, M. S.

Z. J. Deng, D. K. Qing, P. R. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96(2), 023602 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gbit/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Nature (3)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Opt. Switching Networking (1)

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[CrossRef]

Phys. Rev. A (1)

R. Kolesov, “Coherent population trapping in a crystalline solid at room temperature,” Phys. Rev. A 72(5), 051801 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066616 (2003).
[CrossRef]

Phys. Rev. Lett. (6)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Z. J. Deng, D. K. Qing, P. R. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96(2), 023602 (2006).
[CrossRef] [PubMed]

Other (4)

H. N. Yum, Y. J. Jang, M. E. Kim, and M. S. Shahriar, “Pulse delay via tunable white light cavities using fiber optic resonators,” http://arxiv.org/abs/1012.5482 .

R. W. Boyd, and D. J. Gauthier, “Slow and fast light,” in Progress in Optics: Volume 43, E. Wolf, ed. (Elsevier, Amsterdam, 2002), Chap. 6.

Note that ng(WLC) is different from ng: the latter (ng) epresents the group index of the medium inside the WLC, while the former (ng(WLC)) represents an effective group index of the WLC as a whole, including the cavity mirrors. Similarly, vg(WLC) is the effective group velocity for the WLC as a whole, while vgis the group velocity of the material inside the WLC.

H. N. Yum, Y. J. Jang, and M. S. Shahriar, “Pulse propagation through a dispersive intracavity medium,” http://arxiv.org/abs/1012.4483 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a tunable-bandwidth WLC; Two partial reflectors, each with a reflectivity R, enclose the intracavity medium of length Lm with anomalous dispersion, forming a cavity of physical length L.

Fig. 2
Fig. 2

(a) Transfer functions for empty cavity(blue) and for WLC(red), and the Fourier Transform of Gaussian input(green). | S ˜ i n | 2 is normalized to the peak magnitude of .. . (b) Phases of H E C ( ω ) (blue) and H W L C ( ω ) (red). (c) | S f r e e | 2 (blue) and | S W L C | 2 (red). The parameters of the intracavity medium are n1 = −8.223 × 10−16/rad, n3 = 5.223 × 10−35/rad3.

Fig. 3
Fig. 3

For the medium with n 1 = −8.223 × 10−16/rad, n 3 = 1.723 × 10−36/rad3 (a) Transfer functions for empty cavity(blue) and for WLC(red), and the Fourier Transform of Gaussian input(green). | S ˜ i n | 2 is normalized to the peak magnitude of | S ˜ i n | 2 . (b) Phases of transfer function for empty cavity(blue) and for WLC(red). (c) |Sfree |2(blue circles) and |SWLC |2 (red).

Fig. 4
Fig. 4

Diagram of the proposed pulse delay system. Two identical WLCs are separated by a distance of L 2.

Fig. 5
Fig. 5

Illustration of N round trips between two reflectors. See text for details.

Fig. 6
Fig. 6

At t = 0, the reference and the data pulses are launched at the entrance of the LWLC. Blue is the reference pulse ( S f r e e ( t ) ). It propagates the optical path of 2L + L 2 in free space and the center of the pulse appears at the exit of RWLC after t = ( 2 L + L 2 ) / c 1.67 × 10 6 second . The data pulse is observed at the output of the RWLC after t = ( 2 L + 3 L 2 ) / c 5.00 × 10 6 second for one round trip (N = 1) and t = ( 2 L + 101 × L 2 ) / c 1.6833 × 10 4 second for N = 50.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E out = E 0 e j ω t × t 2 e j k L 1 r 2 e 2 j k L ,
ϕ = ω t ω n W L C L c ,
n g ( W L C ) = c L d H W L C d ω .
H i ( ω ) = R N e j ω ( 2 N + 1 ) L 2 / c .
S s y s t e m ( t ) = 1 2 π H t o t a l ( ω ) S ˜ i n ( ω ) exp ( j ω t ) d ω .

Metrics