Abstract

Abstract: We present the first three-dimensional (3D) data sets recorded using optical coherence elastography (OCE). Uni-axial strain rate was measured on human skin in vivo using a spectral-domain optical coherence tomography (OCT) system providing >450 times higher line rate than previously reported for in vivo OCE imaging. Mechanical excitation was applied at a frequency of 125 Hz using a ring actuator sample arm with, for the first time in OCE measurements, a controlled static preload. We performed 3D-OCE, processed in 2D and displayed in 3D, on normal and hydrated skin and observed a more elastic response of the stratum corneum in the hydrated case.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue (Springer-Verlag, 1993).
  2. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
    [CrossRef] [PubMed]
  3. M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 (2003).
    [CrossRef]
  4. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
    [CrossRef] [PubMed]
  5. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
    [CrossRef] [PubMed]
  6. A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
    [CrossRef] [PubMed]
  7. A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
    [PubMed]
  8. D. L. Cochlin, R. H. Ganatra, and D. F. R. Griffiths, “Elastography in the detection of prostatic cancer,” Clin. Radiol. 57(11), 1014–1020 (2002).
    [CrossRef] [PubMed]
  9. J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
    [CrossRef]
  10. S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, and R. L. Ehman, “Magnetic resonance elastography of the brain,” Neuroimage 39(1), 231–237 (2008).
    [CrossRef]
  11. C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
    [PubMed]
  12. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
    [CrossRef] [PubMed]
  13. R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 (2004).
    [CrossRef] [PubMed]
  14. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
    [CrossRef] [PubMed]
  15. H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
    [CrossRef] [PubMed]
  16. R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
    [CrossRef]
  17. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
    [CrossRef] [PubMed]
  18. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
    [CrossRef] [PubMed]
  19. S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
    [CrossRef] [PubMed]
  20. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
    [CrossRef] [PubMed]
  21. X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
    [CrossRef]
  22. X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18(13), 14183–14190 (2010).
    [CrossRef] [PubMed]
  23. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
    [CrossRef] [PubMed]
  24. R. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  25. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  26. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  27. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28(19), 1745–1747 (2003).
    [CrossRef] [PubMed]
  28. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
    [CrossRef] [PubMed]
  29. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).
  30. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
    [CrossRef] [PubMed]
  31. J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
    [CrossRef]
  32. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
    [CrossRef] [PubMed]
  33. H. Fruhstorfer, U. Abel, C.-D. Garthe, and A. Knüttel, “Thickness of the stratum corneum of the volar fingertips,” Clin. Anat. 13(6), 429–433 (2000).
    [CrossRef] [PubMed]
  34. “Fiji is just ImageJ,” http://pacific.mpi-cbg.de/wiki/index.php/ .
  35. S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
    [CrossRef]
  36. A. Limaye, “Drishti-volume exploration and presentation tool,” IEEE Visual., Baltimore, USA (2006).
  37. R. O. Potts and D. A. Chrisman, Jr., andE. M. Buras, Jr., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 (1983).
    [CrossRef] [PubMed]
  38. A. Gabrielli, E. V. Avvedimento, and T. Krieg, “Scleroderma,” N. Engl. J. Med. 360(19), 1989–2003 (2009).
    [CrossRef] [PubMed]
  39. J. De Rigal and J. L. Leveque, “In vivo measurement of the stratum corneum elasticity,” Bioeng. Skin 1, 13–23 (1985).
  40. F. M. Hendriks, D. Brokken, C. W. J. Oomens, and F. P. T. Baaijens, “Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography,” Skin Res. Technol. 10(4), 231–241 (2004).
    [CrossRef] [PubMed]
  41. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  42. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography--limitations and improvements,” Opt. Lett. 33(13), 1425–1427 (2008).
    [CrossRef] [PubMed]

2010 (4)

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[CrossRef]

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18(13), 14183–14190 (2010).
[CrossRef] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[CrossRef] [PubMed]

2009 (3)

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[CrossRef] [PubMed]

A. Gabrielli, E. V. Avvedimento, and T. Krieg, “Scleroderma,” N. Engl. J. Med. 360(19), 1989–2003 (2009).
[CrossRef] [PubMed]

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
[CrossRef] [PubMed]

2008 (3)

2006 (6)

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
[CrossRef]

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[CrossRef] [PubMed]

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef] [PubMed]

R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

2005 (2)

2004 (4)

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

F. M. Hendriks, D. Brokken, C. W. J. Oomens, and F. P. T. Baaijens, “Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography,” Skin Res. Technol. 10(4), 231–241 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
[CrossRef] [PubMed]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 (2004).
[CrossRef] [PubMed]

2003 (6)

2002 (2)

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[PubMed]

D. L. Cochlin, R. H. Ganatra, and D. F. R. Griffiths, “Elastography in the detection of prostatic cancer,” Clin. Radiol. 57(11), 1014–1020 (2002).
[CrossRef] [PubMed]

2000 (3)

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[PubMed]

H. Fruhstorfer, U. Abel, C.-D. Garthe, and A. Knüttel, “Thickness of the stratum corneum of the volar fingertips,” Clin. Anat. 13(6), 429–433 (2000).
[CrossRef] [PubMed]

J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
[CrossRef]

1998 (2)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
[CrossRef] [PubMed]

1995 (1)

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

1991 (1)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[CrossRef] [PubMed]

1985 (1)

J. De Rigal and J. L. Leveque, “In vivo measurement of the stratum corneum elasticity,” Bioeng. Skin 1, 13–23 (1985).

1983 (1)

R. O. Potts and D. A. Chrisman, Jr., andE. M. Buras, Jr., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 (1983).
[CrossRef] [PubMed]

R. O. Potts and D. A. Chrisman, Jr., andE. M. Buras, Jr., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 (1983).
[CrossRef] [PubMed]

Abel, U.

H. Fruhstorfer, U. Abel, C.-D. Garthe, and A. Knüttel, “Thickness of the stratum corneum of the volar fingertips,” Clin. Anat. 13(6), 429–433 (2000).
[CrossRef] [PubMed]

Adhoute, X.

J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
[CrossRef]

Adie, S. G.

Alexandrov, S. A.

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
[CrossRef] [PubMed]

Altmeyer, P.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Armstrong, J. J.

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
[CrossRef] [PubMed]

Avvedimento, E. V.

A. Gabrielli, E. V. Avvedimento, and T. Krieg, “Scleroderma,” N. Engl. J. Med. 360(19), 1989–2003 (2009).
[CrossRef] [PubMed]

Baaijens, F. P. T.

F. M. Hendriks, D. Brokken, C. W. J. Oomens, and F. P. T. Baaijens, “Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography,” Skin Res. Technol. 10(4), 231–241 (2004).
[CrossRef] [PubMed]

Bajraszewski, T.

Bertet, J.

J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
[CrossRef]

Bijnens, B.

J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
[CrossRef]

Bom, N.

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[PubMed]

Boppart, S. A.

Bouma, B.

Bouma, B. E.

Brezinski, M. E.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

Brokken, D.

F. M. Hendriks, D. Brokken, C. W. J. Oomens, and F. P. T. Baaijens, “Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography,” Skin Res. Technol. 10(4), 231–241 (2004).
[CrossRef] [PubMed]

Buras, E. M.

R. O. Potts and D. A. Chrisman, Jr., andE. M. Buras, Jr., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 (1983).
[CrossRef] [PubMed]

Castéra, L.

J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
[CrossRef]

Cense, B.

Céspedes, I.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[CrossRef] [PubMed]

Chan, R. C.

Chaney, E. J.

Chanteloup, E.

J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
[CrossRef]

Chau, A. H.

Chen, T.

Chrisman, D. A.

R. O. Potts and D. A. Chrisman, Jr., andE. M. Buras, Jr., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 (1983).
[CrossRef] [PubMed]

Cochlin, D. L.

D. L. Cochlin, R. H. Ganatra, and D. F. R. Griffiths, “Elastography in the detection of prostatic cancer,” Clin. Radiol. 57(11), 1014–1020 (2002).
[CrossRef] [PubMed]

Couzigou, P.

J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
[CrossRef]

Crecea, V.

D’hooge, J.

J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
[CrossRef]

de Boer, J.

de Boer, J. F.

de Korte, C. L.

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[PubMed]

de Lédinghen, V.

J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
[CrossRef]

De Rigal, J.

J. De Rigal and J. L. Leveque, “In vivo measurement of the stratum corneum elasticity,” Bioeng. Skin 1, 13–23 (1985).

Drexler, W.

Duncan, D. D.

Ehman, R. L.

S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, and R. L. Ehman, “Magnetic resonance elastography of the brain,” Neuroimage 39(1), 231–237 (2008).
[CrossRef]

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Fatemi, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 (2003).
[CrossRef]

Felmlee, J. P.

S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, and R. L. Ehman, “Magnetic resonance elastography of the brain,” Neuroimage 39(1), 231–237 (2008).
[CrossRef]

Fercher, A. F.

Foucher, J.

J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
[CrossRef]

Fruhstorfer, H.

H. Fruhstorfer, U. Abel, C.-D. Garthe, and A. Knüttel, “Thickness of the stratum corneum of the volar fingertips,” Clin. Anat. 13(6), 429–433 (2000).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

Gabrielli, A.

A. Gabrielli, E. V. Avvedimento, and T. Krieg, “Scleroderma,” N. Engl. J. Med. 360(19), 1989–2003 (2009).
[CrossRef] [PubMed]

Gambichler, T.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Ganatra, R. H.

D. L. Cochlin, R. H. Ganatra, and D. F. R. Griffiths, “Elastography in the detection of prostatic cancer,” Clin. Radiol. 57(11), 1014–1020 (2002).
[CrossRef] [PubMed]

Garra, B. S.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).

Garthe, C.-D.

H. Fruhstorfer, U. Abel, C.-D. Garthe, and A. Knüttel, “Thickness of the stratum corneum of the volar fingertips,” Clin. Anat. 13(6), 429–433 (2000).
[CrossRef] [PubMed]

Gavin, A.-C.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

Gehlenborg, N.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

Glaser, K. J.

S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, and R. L. Ehman, “Magnetic resonance elastography of the brain,” Neuroimage 39(1), 231–237 (2008).
[CrossRef]

Goodsell, D. S.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

Greenleaf, J. F.

M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 (2003).
[CrossRef]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Griffiths, D. F. R.

D. L. Cochlin, R. H. Ganatra, and D. F. R. Griffiths, “Elastography in the detection of prostatic cancer,” Clin. Radiol. 57(11), 1014–1020 (2002).
[CrossRef] [PubMed]

Hall, T.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).

Hartmann, L. C.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[PubMed]

Hatle, L.

J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
[CrossRef]

Heimdal, A.

J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
[CrossRef]

Hendriks, F. M.

F. M. Hendriks, D. Brokken, C. W. J. Oomens, and F. P. T. Baaijens, “Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography,” Skin Res. Technol. 10(4), 231–241 (2004).
[CrossRef] [PubMed]

Heriche, J.-K.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

Hillman, T. R.

Hitzenberger, C. K.

Hoffmann, K.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Hong, Y.

Iftimia, N.

Insana, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

Itoh, A.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[CrossRef] [PubMed]

Jack, C. R.

S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, and R. L. Ehman, “Magnetic resonance elastography of the brain,” Neuroimage 39(1), 231–237 (2008).
[CrossRef]

Jamal, F.

J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
[CrossRef]

John, R.

Kaazempur-Mofrad, M. R.

Kallel, F.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).

Kamma, H.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[CrossRef] [PubMed]

Karl, W. C.

Kennedy, B. F.

Khalil, A. S.

Kirkpatrick, S. J.

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

Knüttel, A.

H. Fruhstorfer, U. Abel, C.-D. Garthe, and A. Knüttel, “Thickness of the stratum corneum of the volar fingertips,” Clin. Anat. 13(6), 429–433 (2000).
[CrossRef] [PubMed]

Ko, H. J.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef] [PubMed]

Kowalczyk, A.

Krieg, T.

A. Gabrielli, E. V. Avvedimento, and T. Krieg, “Scleroderma,” N. Engl. J. Med. 360(19), 1989–2003 (2009).
[CrossRef] [PubMed]

Krouskop, T. A.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).

Kruse, S. A.

S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, and R. L. Ehman, “Magnetic resonance elastography of the brain,” Neuroimage 39(1), 231–237 (2008).
[CrossRef]

Kugel, J. L.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[PubMed]

Kukulski, T.

J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
[CrossRef]

Le Bail, B.

J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
[CrossRef]

Leitgeb, R.

Leveque, J. L.

J. De Rigal and J. L. Leveque, “In vivo measurement of the stratum corneum elasticity,” Bioeng. Skin 1, 13–23 (1985).

Li, X.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[CrossRef] [PubMed]

Liang, X.

Lomas, D. J.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Ma, Z. H.

R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

Makita, S.

Manduca, A.

S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, and R. L. Ehman, “Magnetic resonance elastography of the brain,” Neuroimage 39(1), 231–237 (2008).
[CrossRef]

M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 (2003).
[CrossRef]

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Matsumura, T.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[CrossRef] [PubMed]

McKnight, A. L.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[PubMed]

McLaughlin, R. A.

Moussa, G.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Mujat, M.

Muthupillai, R.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Nadkarni, S.

Nassif, N.

Nielsen, C. B.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

North, C.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

O’Donoghue, S. I.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

Oldenburg, A. L.

Olson, A. J.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

Oomens, C. W. J.

F. M. Hendriks, D. Brokken, C. W. J. Oomens, and F. P. T. Baaijens, “Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography,” Skin Res. Technol. 10(4), 231–241 (2004).
[CrossRef] [PubMed]

Ophir, J.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[CrossRef] [PubMed]

Park, B.

Park, B. H.

Pasterkamp, G.

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[PubMed]

Patel, N. A.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

Pierce, M.

Pierce, M. C.

Ponnekanti, H.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[CrossRef] [PubMed]

Potts, R. O.

R. O. Potts and D. A. Chrisman, Jr., andE. M. Buras, Jr., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 (1983).
[CrossRef] [PubMed]

Procter, J. B.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

Quirk, B. C.

Rademakers, F.

J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
[CrossRef]

Rogowska, J.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

Rose, G. H.

S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, and R. L. Ehman, “Magnetic resonance elastography of the brain,” Neuroimage 39(1), 231–237 (2008).
[CrossRef]

Rossman, P. J.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Sampson, D. D.

Sand, D.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Sand, M.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

Schmetterer, L.

Schmitt, J. M.

Shattuck, D. W.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

Shiina, T.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[CrossRef] [PubMed]

Shishkov, M.

Stack, R.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef] [PubMed]

Suetens, P.

J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
[CrossRef]

Sutherland, G. R.

J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
[CrossRef]

Szkulmowska, A.

Szkulmowski, M.

Takahashi, H.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[CrossRef] [PubMed]

Tan, W.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef] [PubMed]

Targowski, P.

Tearney, G.

Tearney, G. J.

Tohno, E.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[CrossRef] [PubMed]

Ueno, E.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[CrossRef] [PubMed]

van der Steen, A. F. W.

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[PubMed]

Vergniol, J.

J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
[CrossRef]

Walter, T.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

Wang, R. K.

R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

Wheeler, T. M.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).

Wojtkowski, M.

Wong, B.

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

Woutman, H. A.

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[PubMed]

Yamakawa, M.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[CrossRef] [PubMed]

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yazdi, Y.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[CrossRef] [PubMed]

Yun, S.

Yun, S.-H.

Zawadzki, R. J.

AJR Am. J. Roentgenol. (1)

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[PubMed]

Annu. Rev. Biomed. Eng. (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

Bioeng. Skin (1)

J. De Rigal and J. L. Leveque, “In vivo measurement of the stratum corneum elasticity,” Bioeng. Skin 1, 13–23 (1985).

Circulation (1)

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[PubMed]

Clin. Anat. (1)

H. Fruhstorfer, U. Abel, C.-D. Garthe, and A. Knüttel, “Thickness of the stratum corneum of the volar fingertips,” Clin. Anat. 13(6), 429–433 (2000).
[CrossRef] [PubMed]

Clin. Radiol. (1)

D. L. Cochlin, R. H. Ganatra, and D. F. R. Griffiths, “Elastography in the detection of prostatic cancer,” Clin. Radiol. 57(11), 1014–1020 (2002).
[CrossRef] [PubMed]

Eur. J. Echocardiogr. (1)

J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens, and G. R. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” Eur. J. Echocardiogr. 1(3), 154–170 (2000).
[CrossRef]

Gut (1)

J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, and V. de Lédinghen, “Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study,” Gut 55(3), 403–408 (2006).
[CrossRef]

Heart (1)

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[CrossRef]

J. Biomech. (1)

R. O. Potts and D. A. Chrisman, Jr., andE. M. Buras, Jr., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 (1983).
[CrossRef] [PubMed]

J. Dermatol. Sci. (1)

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005).
[CrossRef] [PubMed]

N. Engl. J. Med. (1)

A. Gabrielli, E. V. Avvedimento, and T. Krieg, “Scleroderma,” N. Engl. J. Med. 360(19), 1989–2003 (2009).
[CrossRef] [PubMed]

Nat. Methods (1)

S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K. Heriche, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong, “Visualizing biological data-now and in the future,” Nat. Methods 7(3), S1–S4 (2010).
[CrossRef]

Neuroimage (1)

S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, and R. L. Ehman, “Magnetic resonance elastography of the brain,” Neuroimage 39(1), 231–237 (2008).
[CrossRef]

Opt. Express (12)

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
[CrossRef] [PubMed]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
[CrossRef] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[CrossRef] [PubMed]

X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18(13), 14183–14190 (2010).
[CrossRef] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Med. Biol. (1)

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
[CrossRef] [PubMed]

Proc. IEEE (1)

M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 (2003).
[CrossRef]

Radiology (1)

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[CrossRef] [PubMed]

Science (1)

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Skin Res. Technol. (1)

F. M. Hendriks, D. Brokken, C. W. J. Oomens, and F. P. T. Baaijens, “Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography,” Skin Res. Technol. 10(4), 231–241 (2004).
[CrossRef] [PubMed]

Tissue Eng. (1)

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef] [PubMed]

Ultrason. Imaging (2)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[CrossRef] [PubMed]

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998).

Other (3)

A. Limaye, “Drishti-volume exploration and presentation tool,” IEEE Visual., Baltimore, USA (2006).

“Fiji is just ImageJ,” http://pacific.mpi-cbg.de/wiki/index.php/ .

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue (Springer-Verlag, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of the OCE system; C: CCD camera, L1-L5: lenses, G: diffraction grating, PC1-PC4: polarization controllers, FC: 50/50 fiber coupler, M: mirror, FS: force sensor, SC: Scancube, SA: sample arm. A schematic of the sample arm is presented in the inset; (b) Photograph of the sample arm; and (c) Contrast ratio (ratio of strain rate magnitude) between stratum corneum and epidermis versus preload.

Fig. 3
Fig. 3

(a) OCT; (b) OCE; and (c) overlaid images of in vivo skin on the middle finger. In (a), the stratum corneum (SC), living epidermis (LE), imaging plate and a sweat gland are labeled. Image dimensions are 1.4 mm × 1.4 mm.

Fig. 2
Fig. 2

Axial and lateral resolution of OCE images. (a) Strain rate image recorded on human skin in vivo (image dimensions (x-z) are 600 μm × 800 μm); (b) Strain rate measured at depth 150 μm, indicated by black line in (a); (c) Highlighted region of (b) indicating how axial and lateral resolutions in OCE images are determined.

Fig. 4
Fig. 4

3D visualization of in vivo skin from the middle finger of a male subject. (a) OCT, (b) OCE, and (c) overlay, from first perspective view; (d) OCT, (e) OCE, and (f) overlay, from second perspective view; (g) OCT, (h) OCE and (i) overlay, from en face view of skin surface; (j) OCT, (k) OCE and (l) overlay, from en face view at depth of 300 μm. The arrows in (j) indicate shadow artifacts due to overlying sweat glands. Volume dimensions (xyz) are 2 mm × 1 mm × 1 mm. Full 3D data sets also available, View 1 (OCT) and View 2 (OCE).

Fig. 5
Fig. 5

(a) OCT; (b); OCE and; (c) overlaid images of the in vivo hydrated skin on the middle finger. Image dimensions are 1.4 mm × 1.4 mm.

Fig. 6
Fig. 6

In vivo 3D visualizations of hydrated skin from the middle finger of a male subject. (a) OCT, (b) OCE, and (c) overlay, from first perspective view; (d) OCT, (e) OCE, and (f) overlay, from second perspective view; (g) OCT, (h) OCE and (i) overlay, from en face view of skin surface; (j) OCT, (k) OCE and (l) overlay, from en face view at depth of 300 μm. Volume dimensions (xyz) are 2 mm × 1 mm × 1 mm. Full 3D data sets also available, View 3 (OCT) and View 4 (OCE).

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε m ' ( z , t ) = 1 z 0 Δ d Δ t = Δ φ ( z , t ) λ 4 π n Δ t z 0 ,
S R l P N < Δ x OCT ,

Metrics