Abstract

A 640 Gbit/s NRZ OTDM signal has been successfully generated for the first time by format conversion of a 640 Gbit/s OTDM signal from RZ to NRZ. First, a coherent 640 Gbit/s OTDM RZ signal is generated by wavelength conversion of the original incoherent OTDM signal utilizing Kerr switching in a highly nonlinear fiber. Second, RZ-to-NRZ format conversion is achieved in a specially designed silicon microring resonator with FSR of 1280 GHz, Q value of 638, high extinction ratio and low coupling loss to optical fiber. A 640 Gbit/s NRZ OTDM signal with very clear eye-diagram and narrower bandwidth than both the original incoherent 640 Gbit/s and the wavelength converted coherent 640 Gbit/s RZ OTDM signals has been obtained. Bit error ratio measurements show error free (<10−9) performance at a received power of 30dBmfor all the OTDM channels of the 640 Gbit/s NRZ signal, with very low power penalty (<0.5 dB) and improved dispersion tolerance compared to the wavelength converted RZ case.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
    [CrossRef]
  2. L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, P. Yongwoo, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008).
    [CrossRef]
  3. M. I. Hayee and A. E. Willner, “NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems,” IEEE Photon. Technol. Lett. 11(8), 991–993 (1999).
    [CrossRef]
  4. J. Hallin, T. Kjellberg, and T. Swahn, “A 165-Gb/s 4:1 multiplexer in InP DHBT technology,” IEEE J. Solid-state Circuits 41(10), 2209–2214 (2006).
    [CrossRef]
  5. Y. Ding, C. Peucheret, M. Pu, B. Zsigri, J. Seoane, L. Liu, J. Xu, H. Ou, X. Zhang, and D. Huang, “Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator,” Opt. Express 18(20), 21121–21130 (2010).
    [CrossRef] [PubMed]
  6. S. Watanabe, R. Okabe, F. Futami, R. Haindberger, C. Schmidt-Langhorst, C. Schubert, and H. G. Weber, “Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,” in ECOC, 2004, Th4.1.6, pp. 12–13.
  7. Y. Zhang, E. Xu, D. Huang, and X. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett. 21(17), 1202–1204 (2009).
    [CrossRef]
  8. D. Marcuse, “Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers,” J. Lightwave Technol. 8(12), 1816–1823 (1990).
    [CrossRef]
  9. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
    [CrossRef]
  10. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [CrossRef]
  11. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [CrossRef] [PubMed]
  12. H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
    [CrossRef] [PubMed]

2010 (2)

2009 (2)

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[CrossRef]

Y. Zhang, E. Xu, D. Huang, and X. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett. 21(17), 1202–1204 (2009).
[CrossRef]

2008 (2)

L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, P. Yongwoo, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008).
[CrossRef]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[CrossRef] [PubMed]

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

2006 (1)

J. Hallin, T. Kjellberg, and T. Swahn, “A 165-Gb/s 4:1 multiplexer in InP DHBT technology,” IEEE J. Solid-state Circuits 41(10), 2209–2214 (2006).
[CrossRef]

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

1999 (1)

M. I. Hayee and A. E. Willner, “NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems,” IEEE Photon. Technol. Lett. 11(8), 991–993 (1999).
[CrossRef]

1990 (1)

D. Marcuse, “Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers,” J. Lightwave Technol. 8(12), 1816–1823 (1990).
[CrossRef]

Azaña, J.

L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, P. Yongwoo, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Clausen, A. T.

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
[CrossRef] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[CrossRef]

L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, P. Yongwoo, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008).
[CrossRef]

Ding, Y.

Fukuda, H.

Galili, M.

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
[CrossRef] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[CrossRef]

L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, P. Yongwoo, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008).
[CrossRef]

Grüner-Nielsen, L.

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[CrossRef]

Hallin, J.

J. Hallin, T. Kjellberg, and T. Swahn, “A 165-Gb/s 4:1 multiplexer in InP DHBT technology,” IEEE J. Solid-state Circuits 41(10), 2209–2214 (2006).
[CrossRef]

Hansen Mulvad, H. C.

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
[CrossRef] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[CrossRef]

Hayee, M. I.

M. I. Hayee and A. E. Willner, “NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems,” IEEE Photon. Technol. Lett. 11(8), 991–993 (1999).
[CrossRef]

Hu, H.

Huang, D.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Itabashi, S.-i.

Jensen, J. B.

Jeppesen, P.

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
[CrossRef] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[CrossRef]

L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, P. Yongwoo, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008).
[CrossRef]

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Kjellberg, T.

J. Hallin, T. Kjellberg, and T. Swahn, “A 165-Gb/s 4:1 multiplexer in InP DHBT technology,” IEEE J. Solid-state Circuits 41(10), 2209–2214 (2006).
[CrossRef]

Liu, L.

Marcuse, D.

D. Marcuse, “Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers,” J. Lightwave Technol. 8(12), 1816–1823 (1990).
[CrossRef]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Mulvad, H. C. H.

L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, P. Yongwoo, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008).
[CrossRef]

Ou, H.

Oxenløwe, L. K.

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
[CrossRef] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[CrossRef]

L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, P. Yongwoo, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008).
[CrossRef]

Peucheret, C.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Pu, M.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Seoane, J.

Shinojima, H.

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Slavík, R.

L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, P. Yongwoo, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008).
[CrossRef]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Swahn, T.

J. Hallin, T. Kjellberg, and T. Swahn, “A 165-Gb/s 4:1 multiplexer in InP DHBT technology,” IEEE J. Solid-state Circuits 41(10), 2209–2214 (2006).
[CrossRef]

Tsuchizawa, T.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Watanabe, T.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Willner, A. E.

M. I. Hayee and A. E. Willner, “NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems,” IEEE Photon. Technol. Lett. 11(8), 991–993 (1999).
[CrossRef]

Xu, E.

Y. Zhang, E. Xu, D. Huang, and X. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett. 21(17), 1202–1204 (2009).
[CrossRef]

Xu, J.

Yamada, K.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Yongwoo, P.

L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, P. Yongwoo, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008).
[CrossRef]

Zhang, X.

Zhang, Y.

Y. Zhang, E. Xu, D. Huang, and X. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett. 21(17), 1202–1204 (2009).
[CrossRef]

Zsigri, B.

Electron. Lett. (2)

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, P. Yongwoo, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008).
[CrossRef]

IEEE J. Solid-state Circuits (1)

J. Hallin, T. Kjellberg, and T. Swahn, “A 165-Gb/s 4:1 multiplexer in InP DHBT technology,” IEEE J. Solid-state Circuits 41(10), 2209–2214 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. I. Hayee and A. E. Willner, “NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems,” IEEE Photon. Technol. Lett. 11(8), 991–993 (1999).
[CrossRef]

Y. Zhang, E. Xu, D. Huang, and X. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett. 21(17), 1202–1204 (2009).
[CrossRef]

J. Lightwave Technol. (1)

D. Marcuse, “Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers,” J. Lightwave Technol. 8(12), 1816–1823 (1990).
[CrossRef]

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Opt. Express (3)

Other (1)

S. Watanabe, R. Okabe, F. Futami, R. Haindberger, C. Schmidt-Langhorst, C. Schubert, and H. G. Weber, “Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,” in ECOC, 2004, Th4.1.6, pp. 12–13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Amplitude ripples and (b) Q factor of the converted NRZ signal versus Q value of the MRR and bandwidth of the OBPF for 640 Gbit/s RZ-to-NRZ format conversion.

Fig. 2
Fig. 2

(a) Scanning electron microscope (SEM) picture of the fabricated silicon microring resonator. (b) Design of the nano-taper coupler. (c), (d) SEM pictures of the coupling region and the nano-taper. (e) Measured through transmission for the TM0 mode of the fabricated MRR.

Fig. 3
Fig. 3

Experimental setup for 640 Gbit/s RZ-to-NRZ format conversion. The insets show optical sampling oscilloscope traces of the original incoherent 640 Gbit/s OTDM signal, 640 Gbit/s wavelength converted RZ signal, as well as the 640 Gbit/s format converted NRZ signal.

Fig. 4
Fig. 4

(a) Spectra of the original OTDM (blue), wavelength converted RZ (purple), and format converted NRZ signals (black), as well as through transmission of the silicon microring resonator (green). (b)~(d) eye diagrams of the original 640 Gbit/s incoherent OTDM, wavelength converted 640 Gbit/s coherent RZ OTDM, and format converted 640 Gbit/s NRZ signals, respectively.

Fig. 5
Fig. 5

(a) BER measurement of the demultiplexed signal from 640 Gbit/s wavelength converted RZ with PRBS length of 27-1, four neighbouring channels demultiplexed from 640 Gbit/s NRZ with PRBS length of 27-1, as well as channel 1 demultiplexed from 640 Gbit/s NRZ with PRBS length 231-1. (b) BER results with PRBS length of 27-1 for channel 1 demultiplexed from 640 Gbit/s NRZ with 1 and 4 m DCFs, and a demultiplexed tributary from the 640 Gbit/s wavelength converted RZ signal with 1 m DCF.

Fig. 6
Fig. 6

Verification that all 64 OTDM tributaries demultiplexed from the 640 Gbit/s NRZ signal exhibit error free performance at a receiver power of −30 dBm.

Metrics