Abstract

A two-wavelength laser-induced fluorescence (LIF) instrument has been developed and used to characterize individual biological aerosol particles, including biological warfare (BW) agent surrogates. Fluorescence in discrete spectral bands from widely different species, and also from similar species under different growth conditions were measured and compared. The two-wavelength excitation approach was found to increase discrimination among several biological materials, and especially with respect to diesel exhaust particles, a common interferent for LIF BW detection systems. The spectral characteristics of a variety of biological materials and ambient air components have been studied as a function of aerosol particle size and incident fluence.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescent particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23(4), 653–664 (1995).
    [CrossRef]
  2. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
    [CrossRef]
  3. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4-5), 240–248 (1999).
    [CrossRef]
  4. Y. L. Pan, J. Hartings, R. Pinnick, S. Hill, J. Halverson, and R. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
    [CrossRef]
  5. Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
    [CrossRef]
  6. P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
    [CrossRef] [PubMed]
  7. P. H. Kaye, J. E. Barton, E. Hirst, and J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles,” Appl. Opt. 39(21), 3738–3745 (2000).
    [CrossRef]
  8. V. Sivaprakasam, A. Huston, C. Scotto, and J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
    [CrossRef] [PubMed]
  9. P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express 13(10), 3583–3593 (2005).
    [CrossRef] [PubMed]
  10. K. Davitt, Y.-K. Song, W. Patterson Iii, A. V. Nurmikko, M. Gherasimova, J. Han, Y.-L. Pan, and R. K. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express 13(23), 9548–9555 (2005).
    [CrossRef] [PubMed]
  11. Y. L. Pan, V. Boutou, J. R. Bottiger, S. S. Zhang, J. P. Wolf, and R. K. Chang, “A Puff of Air Sorts Bioaerosols for Pathogen Identification,” Aerosol Sci. Technol. 38(6), 598–602 (2004).
    [CrossRef]
  12. V. Sivaprakasam, T. Pletcher, J. E. Tucker, A. L. Huston, J. McGinn, D. Keller, and J. D. Eversole, “Classification and selective collection of individual aerosol particles using laser-induced fluorescence,” Appl. Opt. 48(4), B126–B136 (2009).
    [CrossRef] [PubMed]
  13. Vtech Engineering Corporation, http://www.vtechcorp.com .
  14. Sono-Tek Corporation, http://www.sono-tek.com/ .
  15. H. Microdrop Technologies Gmb, http://www.microdrop.de/ .
  16. V. Sivaprakasam, A. Huston, H. B. Lin, J. D. Eversole, P. Falkenstein, and A. Schultz, “Field test results and ambient aerosol measurements using dual wavelength fluorescence excitation and elastic scatter for bioaerosols”, SPIE conference,” Proceedings 6554, R5540 (2007).
  17. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36(4), 958–967 (1997).
    [CrossRef] [PubMed]
  18. Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).
  19. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [CrossRef]
  20. L. Yan, “Characterization of Engineered Nanomaterial by spectroscopic Ellipsometry,” Horiba Scientific Application Note, Biotechnology UVISEL, SE26.
  21. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
    [CrossRef]
  22. V. A. Markel and V. M. Shalaev, “Geometrical renormalization approach to calculating optical properties of fractal carbonaceous soot,” J. Opt. Soc. Am. A 18(5), 1112–1121 (2001).
    [CrossRef]
  23. C. D. Litton, “Studies of the measurement of respirable coal dusts and diesel particulate matter,” Meas. Sci. Technol. 13(3), 365–374 (2002).
    [CrossRef]

2009

2007

V. Sivaprakasam, A. Huston, H. B. Lin, J. D. Eversole, P. Falkenstein, and A. Schultz, “Field test results and ambient aerosol measurements using dual wavelength fluorescence excitation and elastic scatter for bioaerosols”, SPIE conference,” Proceedings 6554, R5540 (2007).

2005

2004

Y. L. Pan, V. Boutou, J. R. Bottiger, S. S. Zhang, J. P. Wolf, and R. K. Chang, “A Puff of Air Sorts Bioaerosols for Pathogen Identification,” Aerosol Sci. Technol. 38(6), 598–602 (2004).
[CrossRef]

V. Sivaprakasam, A. Huston, C. Scotto, and J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
[CrossRef] [PubMed]

2003

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Y. L. Pan, J. Hartings, R. Pinnick, S. Hill, J. Halverson, and R. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

2002

C. D. Litton, “Studies of the measurement of respirable coal dusts and diesel particulate matter,” Meas. Sci. Technol. 13(3), 365–374 (2002).
[CrossRef]

2001

V. A. Markel and V. M. Shalaev, “Geometrical renormalization approach to calculating optical properties of fractal carbonaceous soot,” J. Opt. Soc. Am. A 18(5), 1112–1121 (2001).
[CrossRef]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).

2000

1999

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4-5), 240–248 (1999).
[CrossRef]

1997

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36(4), 958–967 (1997).
[CrossRef] [PubMed]

1995

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescent particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23(4), 653–664 (1995).
[CrossRef]

1965

Barrington, S. J.

Barton, J. E.

Baxter, K. L.

Bottiger, J. R.

Y. L. Pan, V. Boutou, J. R. Bottiger, S. S. Zhang, J. P. Wolf, and R. K. Chang, “A Puff of Air Sorts Bioaerosols for Pathogen Identification,” Aerosol Sci. Technol. 38(6), 598–602 (2004).
[CrossRef]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef]

Boutou, V.

Y. L. Pan, V. Boutou, J. R. Bottiger, S. S. Zhang, J. P. Wolf, and R. K. Chang, “A Puff of Air Sorts Bioaerosols for Pathogen Identification,” Aerosol Sci. Technol. 38(6), 598–602 (2004).
[CrossRef]

Brock, R. S.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Bronk, B. V.

Bruno, J. G.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescent particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23(4), 653–664 (1995).
[CrossRef]

Cary, W. K.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Chang, R.

Y. L. Pan, J. Hartings, R. Pinnick, S. Hill, J. Halverson, and R. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Chang, R. K.

K. Davitt, Y.-K. Song, W. Patterson Iii, A. V. Nurmikko, M. Gherasimova, J. Han, Y.-L. Pan, and R. K. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express 13(23), 9548–9555 (2005).
[CrossRef] [PubMed]

Y. L. Pan, V. Boutou, J. R. Bottiger, S. S. Zhang, J. P. Wolf, and R. K. Chang, “A Puff of Air Sorts Bioaerosols for Pathogen Identification,” Aerosol Sci. Technol. 38(6), 598–602 (2004).
[CrossRef]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef]

Clark, J. M.

Copeland, R. A.

Davitt, K.

Eversole, J.

Eversole, J. D.

V. Sivaprakasam, T. Pletcher, J. E. Tucker, A. L. Huston, J. McGinn, D. Keller, and J. D. Eversole, “Classification and selective collection of individual aerosol particles using laser-induced fluorescence,” Appl. Opt. 48(4), B126–B136 (2009).
[CrossRef] [PubMed]

V. Sivaprakasam, A. Huston, H. B. Lin, J. D. Eversole, P. Falkenstein, and A. Schultz, “Field test results and ambient aerosol measurements using dual wavelength fluorescence excitation and elastic scatter for bioaerosols”, SPIE conference,” Proceedings 6554, R5540 (2007).

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Falkenstein, P.

V. Sivaprakasam, A. Huston, H. B. Lin, J. D. Eversole, P. Falkenstein, and A. Schultz, “Field test results and ambient aerosol measurements using dual wavelength fluorescence excitation and elastic scatter for bioaerosols”, SPIE conference,” Proceedings 6554, R5540 (2007).

Faris, G. W.

Fernandez, G. L.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescent particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23(4), 653–664 (1995).
[CrossRef]

Foot, E. V.

Gherasimova, M.

Hairston, P. P.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

Halverson, J.

Y. L. Pan, J. Hartings, R. Pinnick, S. Hill, J. Halverson, and R. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Han, J.

Hardgrove, J. J.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Hartings, J.

Y. L. Pan, J. Hartings, R. Pinnick, S. Hill, J. Halverson, and R. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Hill, S.

Y. L. Pan, J. Hartings, R. Pinnick, S. Hill, J. Halverson, and R. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Hill, S. C.

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescent particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23(4), 653–664 (1995).
[CrossRef]

Hirst, E.

Ho, J.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

Holler, S.

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef]

Hu, X. H.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Huston, A.

V. Sivaprakasam, A. Huston, H. B. Lin, J. D. Eversole, P. Falkenstein, and A. Schultz, “Field test results and ambient aerosol measurements using dual wavelength fluorescence excitation and elastic scatter for bioaerosols”, SPIE conference,” Proceedings 6554, R5540 (2007).

V. Sivaprakasam, A. Huston, C. Scotto, and J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
[CrossRef] [PubMed]

Huston, A. L.

Jacobs, K. M.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Jeys, T. H.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4-5), 240–248 (1999).
[CrossRef]

Kaye, P. H.

Keller, D.

Lin, H. B.

V. Sivaprakasam, A. Huston, H. B. Lin, J. D. Eversole, P. Falkenstein, and A. Schultz, “Field test results and ambient aerosol measurements using dual wavelength fluorescence excitation and elastic scatter for bioaerosols”, SPIE conference,” Proceedings 6554, R5540 (2007).

Litton, C. D.

C. D. Litton, “Studies of the measurement of respirable coal dusts and diesel particulate matter,” Meas. Sci. Technol. 13(3), 365–374 (2002).
[CrossRef]

Lu, J. Q.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Ma, X.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Malitson, I. H.

Markel, V. A.

Mayo, M. W.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescent particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23(4), 653–664 (1995).
[CrossRef]

McGinn, J.

Mortelmans, K.

Nachman, P.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescent particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23(4), 653–664 (1995).
[CrossRef]

Newbury, N. R.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4-5), 240–248 (1999).
[CrossRef]

Niles, S.

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef]

Nurmikko, A. V.

Pan, Y. L.

Y. L. Pan, V. Boutou, J. R. Bottiger, S. S. Zhang, J. P. Wolf, and R. K. Chang, “A Puff of Air Sorts Bioaerosols for Pathogen Identification,” Aerosol Sci. Technol. 38(6), 598–602 (2004).
[CrossRef]

Y. L. Pan, J. Hartings, R. Pinnick, S. Hill, J. Halverson, and R. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef]

Pan, Y.-L.

Patterson Iii, W.

Pendleton, J. D.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescent particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23(4), 653–664 (1995).
[CrossRef]

Pinnick, R.

Y. L. Pan, J. Hartings, R. Pinnick, S. Hill, J. Halverson, and R. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Pinnick, R. G.

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).

Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescent particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23(4), 653–664 (1995).
[CrossRef]

Pletcher, T.

Primmerman, C. A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4-5), 240–248 (1999).
[CrossRef]

Quant, F. R.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

Reyes, F. L.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4-5), 240–248 (1999).
[CrossRef]

Roselle, D. C.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Rowe, G. S.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4-5), 240–248 (1999).
[CrossRef]

Sanchez, A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4-5), 240–248 (1999).
[CrossRef]

Schultz, A.

V. Sivaprakasam, A. Huston, H. B. Lin, J. D. Eversole, P. Falkenstein, and A. Schultz, “Field test results and ambient aerosol measurements using dual wavelength fluorescence excitation and elastic scatter for bioaerosols”, SPIE conference,” Proceedings 6554, R5540 (2007).

Scotto, C.

Seaver, M.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Shalaev, V. M.

Sivaprakasam, V.

Song, Y.-K.

Stanley, W. R.

Tucker, J. E.

Wolf, J. P.

Y. L. Pan, V. Boutou, J. R. Bottiger, S. S. Zhang, J. P. Wolf, and R. K. Chang, “A Puff of Air Sorts Bioaerosols for Pathogen Identification,” Aerosol Sci. Technol. 38(6), 598–602 (2004).
[CrossRef]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).

Yan, L.

L. Yan, “Characterization of Engineered Nanomaterial by spectroscopic Ellipsometry,” Horiba Scientific Application Note, Biotechnology UVISEL, SE26.

Yang, P.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Zhang, S. S.

Y. L. Pan, V. Boutou, J. R. Bottiger, S. S. Zhang, J. P. Wolf, and R. K. Chang, “A Puff of Air Sorts Bioaerosols for Pathogen Identification,” Aerosol Sci. Technol. 38(6), 598–602 (2004).
[CrossRef]

Aerosol Sci. Technol.

Y. L. Pan, J. Hartings, R. Pinnick, S. Hill, J. Halverson, and R. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescent particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23(4), 653–664 (1995).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Y. L. Pan, V. Boutou, J. R. Bottiger, S. S. Zhang, J. P. Wolf, and R. K. Chang, “A Puff of Air Sorts Bioaerosols for Pathogen Identification,” Aerosol Sci. Technol. 38(6), 598–602 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. B

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).

Field Anal. Chem. Technol.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4-5), 240–248 (1999).
[CrossRef]

J. Aerosol Sci.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Meas. Sci. Technol.

C. D. Litton, “Studies of the measurement of respirable coal dusts and diesel particulate matter,” Meas. Sci. Technol. 13(3), 365–374 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Proceedings

V. Sivaprakasam, A. Huston, H. B. Lin, J. D. Eversole, P. Falkenstein, and A. Schultz, “Field test results and ambient aerosol measurements using dual wavelength fluorescence excitation and elastic scatter for bioaerosols”, SPIE conference,” Proceedings 6554, R5540 (2007).

Other

Vtech Engineering Corporation, http://www.vtechcorp.com .

Sono-Tek Corporation, http://www.sono-tek.com/ .

H. Microdrop Technologies Gmb, http://www.microdrop.de/ .

L. Yan, “Characterization of Engineered Nanomaterial by spectroscopic Ellipsometry,” Horiba Scientific Application Note, Biotechnology UVISEL, SE26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the two-wavelength excitation single-particle fluorescence analyzer, 2-SPFA showing the optical layout and an electronic timing diagram.

Fig. 3
Fig. 3

The fluorescence signature in two 266 nm excited spectral bands from background aerosol particles sampled over a 2 hr period, overlaid with the signature of some of the common simulants and interferents. The background particles show substantial overlap with inorganic interferent kaolin and fungal spores.

Fig. 2
Fig. 2

Fluorescence signatures of selected biological samples and inorganic samples representative of ambient air. As described in the text, the sum of emission bands for 266 nm and 355 nm excitation are plotted as the horizontal and vertical axis respectively. The use of these two excitation wavelengths shows an ability to differentiate many of these samples into reasonably distinct groups.

Fig. 4
Fig. 4

Shows the fluorescence signatures in two 266 nm excited spectral bands from background aerosol particles sampled (a) without, and (b) with, diesel exhaust present. The new highly fluorescent population present in the Bkgrd particles in (b) centered at coordinates (3.5 × 104, 3 × 103) is diesel exhaust particles.

Fig. 5
Fig. 5

The fluorescence signature of ambient outdoor aerosol particles sampled with diesel exhaust present, showing the comparison between 266 nm and 355 nm excited fluorescence. The left graph (a) shows data plotted for two fluorescence channels excited by 266 nm laser light. In the graph on the right (b) the vertical axis is plotted for the 450 nm fluorescence band excited by 355 nm laser light. In this plot the diesel aerosol population is seen to be significantly better separated from the bacterial aerosol samples, BG and BN.

Fig. 6
Fig. 6

The fluorescence measured for two 266 nm excitation pulses separated by 200 ns. The fluence of the first excitation beam was varied from 0.05 mJ/cm2 to 8 mJ/cm2 and the fluence of the second laser was held at 0.5 mJ/cm2. The fluorescence measured for the fluorescence band centered at 350 nm is shown; solid lines (fluorescence from first excitation) and dotted lines (fluorescence from second excitation).

Fig. 7
Fig. 7

Fluorescence signature of two bioagent simulants; ovalbumin and Pantoea agglomerans in TSB media ranging in size from 1 μm to 7 μm. Fairly tight fluorescence distribution is measured for the distinct sizes.

Fig. 8
Fig. 8

Mean fluorescence measured for a number of calibration and bioaerosol particles measured as a function of particle size. The fluorescence measured in the 350 nm band is plotted with the standard deviation plotted as the error bars. A power fit was performed to demonstrate the relationship between fluorescence and particle size and is labeled for each particle type.

Fig. 9
Fig. 9

(a) Particle size distribution measured by APS 3321 and (b) the fluorescence of three of the simulants generated using a Pitt generator (dry aerosolization) and Collison nebulizer (wet aerosolization).

Fig. 10
Fig. 10

Fluorescence signatures of 3 simulants (a) BG DPG spores in TSB mod media, (b) BS DPG Vegetative cells in TSB and (c) Yersinia rohdei in TSB, in media (blue), the washed particles (red) and the leftover growth media (green) showing the fingerprint of the components and the mixture. In some cases the fluorescence of the sum equals to the fluorescence of the components and the patterns shifts for other cases.

Fig. 11
Fig. 11

Fluorescence signature of 2 simulants (a) Yersinia rohdei in TSB and (b) BG DPG in TSB, before and after gamma irradiation.

Tables (3)

Tables Icon

Table 1 Linearity of fluorescencea

Tables Icon

Table 2 Fluorescence dependence on particle sizeb

Tables Icon

Table 3 Elastic scatter dependence on particle sizec

Metrics