Abstract

One dimensional photonic crystals combining positive and negative index layers have shown to present a photonic band gap insensitive to the period scaling when the volume average index vanishes. Defect modes lying in this zero- gap can in addition be obtained without locally breaking the symmetry of the crystal lattice. In this work, index dispersion is shown to broaden the resonant frequencies creating then a conduction band lying inside the zero- gap. Self-collimation and focusing effects are in addition demonstrated in zero-average index metamaterials supporting defect modes. This beam shaping is explained in the framework of a beam propagation model by introducing an harmonic average index parameter.

© 2011 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Interaction between non-Bragg band gaps in 1D metamaterial photonic crystals

Juan A. Monsoriu, Ricardo A. Depine, María L. Martínez-Ricci, and Enrique Silvestre
Opt. Express 14(26) 12958-12967 (2006)

Internal field distribution measurement in 1-D strongly anisotropic sub-wavelength periodic structures of finite length

Mesfin Woldeyohannes, John O. Schenk, Robert P. Ingel, Shawn P. Rigdon, Mitchell Pate, John D. Graham, Michael Clare, Weiguo Yang, and Michael A. Fiddy
Opt. Express 19(1) 81-92 (2011)

Modeling photonic crystal interfaces and stacks: impedance-based approaches

Felix J. Lawrence, C. Martijn de Sterke, Lindsay C. Botten, R. C. McPhedran, and Kokou B. Dossou
Adv. Opt. Photon. 5(4) 385-455 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Joannopoulos, S. Johnson, D. Winn, and R. Meade, Photonic crystals: molding the flow of light, 2nd edition, (Princeton University Press2008).
  2. I. Nefedov and S. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
    [Crossref]
  3. J. Li, L. Zhou, C. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 83901 (2003).
    [Crossref]
  4. D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. Vigneron, E. E. Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004).
    [Crossref]
  5. Y. Yuan, L. Ran, J. Huangfu, H. Chen, L. Shen, and J. Kong, “Experimental verification of zero order bandgap in a layered stack of left-handed and right-handed materials,” Opt. Express 14, 2220–2227 (2006).
    [Crossref] [PubMed]
  6. S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
    [Crossref] [PubMed]
  7. V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
    [Crossref] [PubMed]
  8. N. Panoiu, J. Osgood, S. Zhang, and S. Brueck, “Zero-n bandgap in photonic crystal superlattices,” J. Opt. Soc. Am. B 23, 506–513 (2006).
    [Crossref]
  9. I. Shadrivov, A. Sukhorukov, and Y. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820–3822 (2009).
    [Crossref]
  10. F. Krayzel, R. Pollès, A. Moreau, and M. Mihailovic, “Simulation and analysis of exotic non-specular phenomena,” J. Europ. Opt. Soc. : Rap. Pub. 5, 10025 (2010).
    [Crossref]
  11. E. Silvestre, R. Depine, M. Martínez-Ricci, and J. Monsoriu, “Role of dispersion on zero-average-index bandgaps,” J. Opt. Soc. Am. B 26, 581–586 (2009).
    [Crossref]
  12. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
    [Crossref]
  13. Throughout this paper, the inverse Fourier Transform is defined by TF−1(f(α))=∫−∞∞f(x)exp(iαx)dα.
  14. M. Born, E. Wolf, and A. B. Bhatia, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Cambridge University press, Cambridge2000).
    [PubMed]

2010 (1)

F. Krayzel, R. Pollès, A. Moreau, and M. Mihailovic, “Simulation and analysis of exotic non-specular phenomena,” J. Europ. Opt. Soc. : Rap. Pub. 5, 10025 (2010).
[Crossref]

2009 (4)

E. Silvestre, R. Depine, M. Martínez-Ricci, and J. Monsoriu, “Role of dispersion on zero-average-index bandgaps,” J. Opt. Soc. Am. B 26, 581–586 (2009).
[Crossref]

S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[Crossref] [PubMed]

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
[Crossref] [PubMed]

I. Shadrivov, A. Sukhorukov, and Y. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820–3822 (2009).
[Crossref]

2006 (2)

2004 (1)

D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. Vigneron, E. E. Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004).
[Crossref]

2003 (1)

J. Li, L. Zhou, C. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 83901 (2003).
[Crossref]

2002 (1)

I. Nefedov and S. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[Crossref]

1999 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Akjouj, A.

D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. Vigneron, E. E. Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004).
[Crossref]

Bhatia, A. B.

M. Born, E. Wolf, and A. B. Bhatia, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Cambridge University press, Cambridge2000).
[PubMed]

Born, M.

M. Born, E. Wolf, and A. B. Bhatia, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Cambridge University press, Cambridge2000).
[PubMed]

Boudouti, E. E.

D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. Vigneron, E. E. Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004).
[Crossref]

Bria, D.

D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. Vigneron, E. E. Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004).
[Crossref]

Brueck, S.

Cabrini, S.

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
[Crossref] [PubMed]

Chan, C.

J. Li, L. Zhou, C. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 83901 (2003).
[Crossref]

Chang, A.

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
[Crossref] [PubMed]

Chatterjee, R.

S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[Crossref] [PubMed]

Chen, H.

Dardano, P.

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
[Crossref] [PubMed]

Depine, R.

Dhuey, S.

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
[Crossref] [PubMed]

Djafari-Rouhani, B.

D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. Vigneron, E. E. Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004).
[Crossref]

Dobrzynski, L.

D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. Vigneron, E. E. Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004).
[Crossref]

Harteneck, B.

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
[Crossref] [PubMed]

Huangfu, J.

Joannopoulos, J.

J. Joannopoulos, S. Johnson, D. Winn, and R. Meade, Photonic crystals: molding the flow of light, 2nd edition, (Princeton University Press2008).

Johnson, S.

J. Joannopoulos, S. Johnson, D. Winn, and R. Meade, Photonic crystals: molding the flow of light, 2nd edition, (Princeton University Press2008).

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Kivshar, Y.

I. Shadrivov, A. Sukhorukov, and Y. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820–3822 (2009).
[Crossref]

Kocaman, S.

S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[Crossref] [PubMed]

Kong, J.

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Krayzel, F.

F. Krayzel, R. Pollès, A. Moreau, and M. Mihailovic, “Simulation and analysis of exotic non-specular phenomena,” J. Europ. Opt. Soc. : Rap. Pub. 5, 10025 (2010).
[Crossref]

Kwong, D.

S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[Crossref] [PubMed]

Li, J.

J. Li, L. Zhou, C. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 83901 (2003).
[Crossref]

Martínez-Ricci, M.

Mcmillan, J.

S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[Crossref] [PubMed]

Meade, R.

J. Joannopoulos, S. Johnson, D. Winn, and R. Meade, Photonic crystals: molding the flow of light, 2nd edition, (Princeton University Press2008).

Mihailovic, M.

F. Krayzel, R. Pollès, A. Moreau, and M. Mihailovic, “Simulation and analysis of exotic non-specular phenomena,” J. Europ. Opt. Soc. : Rap. Pub. 5, 10025 (2010).
[Crossref]

Mocella, V.

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
[Crossref] [PubMed]

Monsoriu, J.

Moreau, A.

F. Krayzel, R. Pollès, A. Moreau, and M. Mihailovic, “Simulation and analysis of exotic non-specular phenomena,” J. Europ. Opt. Soc. : Rap. Pub. 5, 10025 (2010).
[Crossref]

Moretti, L.

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
[Crossref] [PubMed]

Nefedov, I.

I. Nefedov and S. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[Crossref]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Nougaoui, A.

D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. Vigneron, E. E. Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004).
[Crossref]

Olynick, D.

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
[Crossref] [PubMed]

Osgood, J.

Osgood, R.

S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[Crossref] [PubMed]

Panoiu, N.

S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[Crossref] [PubMed]

N. Panoiu, J. Osgood, S. Zhang, and S. Brueck, “Zero-n bandgap in photonic crystal superlattices,” J. Opt. Soc. Am. B 23, 506–513 (2006).
[Crossref]

Pollès, R.

F. Krayzel, R. Pollès, A. Moreau, and M. Mihailovic, “Simulation and analysis of exotic non-specular phenomena,” J. Europ. Opt. Soc. : Rap. Pub. 5, 10025 (2010).
[Crossref]

Ran, L.

Rendina, I.

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
[Crossref] [PubMed]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Shadrivov, I.

I. Shadrivov, A. Sukhorukov, and Y. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820–3822 (2009).
[Crossref]

Shen, L.

Sheng, P.

J. Li, L. Zhou, C. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 83901 (2003).
[Crossref]

Silvestre, E.

Sukhorukov, A.

I. Shadrivov, A. Sukhorukov, and Y. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820–3822 (2009).
[Crossref]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Tretyakov, S.

I. Nefedov and S. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[Crossref]

Vigneron, J.

D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. Vigneron, E. E. Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004).
[Crossref]

Winn, D.

J. Joannopoulos, S. Johnson, D. Winn, and R. Meade, Photonic crystals: molding the flow of light, 2nd edition, (Princeton University Press2008).

Wolf, E.

M. Born, E. Wolf, and A. B. Bhatia, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Cambridge University press, Cambridge2000).
[PubMed]

Wong, C.

S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[Crossref] [PubMed]

Yu, M.

S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[Crossref] [PubMed]

Yuan, Y.

Zhang, S.

Zhou, L.

J. Li, L. Zhou, C. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 83901 (2003).
[Crossref]

Appl. Phys. Lett. (2)

I. Shadrivov, A. Sukhorukov, and Y. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820–3822 (2009).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

J. Europ. Opt. Soc. : Rap. Pub. (1)

F. Krayzel, R. Pollès, A. Moreau, and M. Mihailovic, “Simulation and analysis of exotic non-specular phenomena,” J. Europ. Opt. Soc. : Rap. Pub. 5, 10025 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Phys. Rev. E (2)

I. Nefedov and S. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[Crossref]

D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. Vigneron, E. E. Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004).
[Crossref]

Phys. Rev. Lett. (3)

J. Li, L. Zhou, C. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 83901 (2003).
[Crossref]

S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[Crossref] [PubMed]

V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009).
[Crossref] [PubMed]

Other (3)

J. Joannopoulos, S. Johnson, D. Winn, and R. Meade, Photonic crystals: molding the flow of light, 2nd edition, (Princeton University Press2008).

Throughout this paper, the inverse Fourier Transform is defined by TF−1(f(α))=∫−∞∞f(x)exp(iαx)dα.

M. Born, E. Wolf, and A. B. Bhatia, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Cambridge University press, Cambridge2000).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) and (c): dispersion relation given by Eq. (1) (black curve) and its Taylor expansions (Eq. (2)) (red curve). (b) and (d): reflectance of the structure composed of N = 50 periods. Black curves correspond to the nondispersive case and red curves to the dispersive case. (a) and (b): the structure is characterized by n1 = 1, n 2 0 = 2, η1 = 1, η2 = 0.5, d1 = 2D/3, d2 = D/3 and D/λ0 = 13/8 (which corresponds to D = 1.625λ0). (c) and (d): the parameters are the same but D/λ0 = 3/2.

Fig. 2
Fig. 2

Modulus of the field when a PBGM, embedded in a air-medium (n0 = 1), is illuminated by a beam. (a) The parameters of the PBGM are N = 200, d1 = d2 = D/2, n1 = 2, n 2 0 = 2, η1 = 1, η2 = 0.5 and D = λ0. (b) The parameters of the PBGM are N = 400, d1 = D/3, d2 = 2D/3, n1 = 1, n 0 2 = 0.5, η1 = 1, η2 = 0.5 and D = 3λ0.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

cos ( κ D ) = cos ( n ¯ k D ) + ( η 1 η 2 ) 2 2 η 1 η 2 sin ( n 1 k d 1 ) sin ( | n 2 | k d 2 ) ,
cos ( κ D ) 1 + Γ x m 2 + Γ Δ n 2 ( λ ) k d 2 x m ( Δ n 2 ( λ ) k d 2 ) 2 / 2 ,
Δ m λ = m A ( η 2 2 η 1 2 ) ( λ 0 Λ m ) A 2 η 2 η 1 m ( A + m ) ( η 2 η 1 ) 2 ,
U ( x , L ) = T F 1 { U i ( α ) ( P 1 ( α , d 1 ) P 2 ( α , d 2 ) ) N } .
U ( x , L ) = T F 1 { U i ( α ) P ˜ ( α , D ) N } .
U ( x , L ) = W 0 ω ¯ ( L ) e ( x W ( L ) ) 2 e i ω c n L e i φ ( x , L ) ,
W ( L ) = W 0 1 + θ 0 2 ( N D ) 2 1 n 2 ,
d 1 n 1 + d 2 n 2 = 0 .
U ( x , L ) = T F 1 { U i ( α ) P 0 ( α , f ) P ˜ ( α , D ) N P 0 ( α , f ) } ,
W ( f ) = W 0 1 + θ 0 2 ( f n 0 + N D 1 n + f n 0 ) 2 .
f + f = N D 1 n n 0 .

Metrics