Abstract

A novel wavelength-correlating receiver for incoherent Optical Code Division Multiple Access (OCDMA) system is proposed and demonstrated in this paper. Enabled by the wavelength conversion based scheme, the proposed receiver can support various code types including one-dimensional optical codes and time-spreading/wavelength-hopping two dimensional codes. Also, a synchronous detection scheme with time-to- wavelength based code acquisition is proposed, by which code acquisition time can be substantially reduced. Moreover, a novel data-validation methodology based on all-optical pulse-width monitoring is introduced for the wavelength-correlating receiver. Experimental demonstration of the new proposed receiver is presented and low bit error rate data-receiving is achieved without optical hard limiting and electronic power thresholding. For the first time, a detailed theoretical performance analysis specialized for the wavelength-correlating receiver is presented. Numerical results show that the overall performance of the proposed receiver prevails over conventional OCDMA receivers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Salehi, “Code division multiple-access techniques in optical fiber network–Part I: fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
    [CrossRef]
  2. H. P. Sardesai and A. M. Weiner, “Nonlinear fibre-optic receiver for ultrashort pulse code division multiple access communications,” Electron. Lett. 33(7), 610–611 (1997).
    [CrossRef]
  3. X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, “Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system,” Opt. Express 13(14), 5499–5505 (2005).
    [CrossRef] [PubMed]
  4. J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A grating-based OCDMA coding- decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction,” J. Lightwave Technol. 20(1), 36–46 (2002).
    [CrossRef]
  5. M. P. Fok, Y. Deng, and P. R. Prucnal, “A compact nonlinear fiber-based optical autocorrelation peak discriminator,” Opt. Express 17(12), 9918–9923 (2009).
    [CrossRef] [PubMed]
  6. M. P. Fok, Y. Deng, and P. R. Prucnal, “Asynchronous detection of optical code division multiple access signals using a bandwidth-efficient and wavelength-aware receiver,” Opt. Lett. 35(7), 1097–1099 (2010).
    [CrossRef] [PubMed]
  7. W. Leyang, Q. Kun, Z. Chongfu, Z. Heng, and X. Lu, “A new optical orthogonal code label and all optical recognition technology for optical packet switching,” presented at IEEE International Conference on Broadband Network & Multimedia Technology(IC-BNMT), Beijing, China, 26–28 Oct. 2010.
  8. J. B. Rosas-Fernandez, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-Label recognition based on FWM,” J. Lightwave Technol. 14(3), 868–878 (2008).
  9. F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory 35(3), 595–604 (1989).
    [CrossRef]
  10. G.-C. Yang and T. E. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Trans. Inf. Theory 41(1), 96–106 (1995).
    [CrossRef]
  11. C.-C. Yang, J.-F. Huang, and Y.-H. Wang, “Multipulse-Per-Row codes for high-speed optical wavelength/time CDMA Networks,” IEEE Photon. Technol. Lett. 19(21), 1756–1758 (2007).
    [CrossRef]
  12. S. Zahedi and J. A. Salehi, “Analytical comparison of various fiber-optic CDMA receiver structures,” J. Lightwave Technol. 18(12), 1718–1727 (2000).
    [CrossRef]
  13. A. Keshavarzian and J. A. Salehi, “Optical orthogonal code acquisition in fiber-optic CDMA systems via the simple serial-search method,” IEEE Trans. Commun. 50(3), 473–483 (2002).
    [CrossRef]
  14. A. Keshavarzian and J. A. Salehi, “Multiple-shift code acquisition of optical orthogonal codes in optical CDMA systems,” IEEE Trans. Commun. 53(4), 687–697 (2005).
    [CrossRef]
  15. F. Benedetto and G. Giunta, “On efficient code acquisition of optical orthogonal codes in optical CDMA systems,” IEEE Trans. Commun. 58(2), 438–441 (2010).
    [CrossRef]
  16. X. Wang and K. Kitayama, “Analysis of beat noise in coherent and incoherent time-spreading OCDMA,” J. Lightwave Technol. 22(10), 2226–2235 (2004).
    [CrossRef]
  17. G.-C. Yang and W. C. Kwong, “Performance analysis of extended carrier-hopping prime codes for optical CDMA,” IEEE Trans. Commun. 53(5), 876–881 (2005).
    [CrossRef]
  18. C.-C. Hsu, G.-C. Yang, and W. C. Kwong, “Hard-Limiting performance analysis of 2-D optical codes under the chip-asynchronous assumption,” IEEE Trans. Commun. 56(5), 762–768 (2008).
    [CrossRef]

2010 (2)

2009 (1)

2008 (2)

C.-C. Hsu, G.-C. Yang, and W. C. Kwong, “Hard-Limiting performance analysis of 2-D optical codes under the chip-asynchronous assumption,” IEEE Trans. Commun. 56(5), 762–768 (2008).
[CrossRef]

J. B. Rosas-Fernandez, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-Label recognition based on FWM,” J. Lightwave Technol. 14(3), 868–878 (2008).

2007 (1)

C.-C. Yang, J.-F. Huang, and Y.-H. Wang, “Multipulse-Per-Row codes for high-speed optical wavelength/time CDMA Networks,” IEEE Photon. Technol. Lett. 19(21), 1756–1758 (2007).
[CrossRef]

2005 (3)

A. Keshavarzian and J. A. Salehi, “Multiple-shift code acquisition of optical orthogonal codes in optical CDMA systems,” IEEE Trans. Commun. 53(4), 687–697 (2005).
[CrossRef]

G.-C. Yang and W. C. Kwong, “Performance analysis of extended carrier-hopping prime codes for optical CDMA,” IEEE Trans. Commun. 53(5), 876–881 (2005).
[CrossRef]

X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, “Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system,” Opt. Express 13(14), 5499–5505 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (2)

2000 (1)

1997 (1)

H. P. Sardesai and A. M. Weiner, “Nonlinear fibre-optic receiver for ultrashort pulse code division multiple access communications,” Electron. Lett. 33(7), 610–611 (1997).
[CrossRef]

1995 (1)

G.-C. Yang and T. E. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Trans. Inf. Theory 41(1), 96–106 (1995).
[CrossRef]

1989 (2)

J. A. Salehi, “Code division multiple-access techniques in optical fiber network–Part I: fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
[CrossRef]

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory 35(3), 595–604 (1989).
[CrossRef]

Ayotte, S.

J. B. Rosas-Fernandez, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-Label recognition based on FWM,” J. Lightwave Technol. 14(3), 868–878 (2008).

Benedetto, F.

F. Benedetto and G. Giunta, “On efficient code acquisition of optical orthogonal codes in optical CDMA systems,” IEEE Trans. Commun. 58(2), 438–441 (2010).
[CrossRef]

Chung, F. R. K.

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory 35(3), 595–604 (1989).
[CrossRef]

Deng, Y.

Fok, M. P.

Fuja, T. E.

G.-C. Yang and T. E. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Trans. Inf. Theory 41(1), 96–106 (1995).
[CrossRef]

Giunta, G.

F. Benedetto and G. Giunta, “On efficient code acquisition of optical orthogonal codes in optical CDMA systems,” IEEE Trans. Commun. 58(2), 438–441 (2010).
[CrossRef]

Hamanaka, T.

Hsu, C.-C.

C.-C. Hsu, G.-C. Yang, and W. C. Kwong, “Hard-Limiting performance analysis of 2-D optical codes under the chip-asynchronous assumption,” IEEE Trans. Commun. 56(5), 762–768 (2008).
[CrossRef]

Huang, J.-F.

C.-C. Yang, J.-F. Huang, and Y.-H. Wang, “Multipulse-Per-Row codes for high-speed optical wavelength/time CDMA Networks,” IEEE Photon. Technol. Lett. 19(21), 1756–1758 (2007).
[CrossRef]

Ibsen, M.

Keshavarzian, A.

A. Keshavarzian and J. A. Salehi, “Multiple-shift code acquisition of optical orthogonal codes in optical CDMA systems,” IEEE Trans. Commun. 53(4), 687–697 (2005).
[CrossRef]

A. Keshavarzian and J. A. Salehi, “Optical orthogonal code acquisition in fiber-optic CDMA systems via the simple serial-search method,” IEEE Trans. Commun. 50(3), 473–483 (2002).
[CrossRef]

Kitayama, K.

Kwong, W. C.

C.-C. Hsu, G.-C. Yang, and W. C. Kwong, “Hard-Limiting performance analysis of 2-D optical codes under the chip-asynchronous assumption,” IEEE Trans. Commun. 56(5), 762–768 (2008).
[CrossRef]

G.-C. Yang and W. C. Kwong, “Performance analysis of extended carrier-hopping prime codes for optical CDMA,” IEEE Trans. Commun. 53(5), 876–881 (2005).
[CrossRef]

LaRochelle, S.

J. B. Rosas-Fernandez, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-Label recognition based on FWM,” J. Lightwave Technol. 14(3), 868–878 (2008).

Lee, J. H.

Petropoulos, P.

Prucnal, P. R.

Richardson, D. J.

Rosas-Fernandez, J. B.

J. B. Rosas-Fernandez, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-Label recognition based on FWM,” J. Lightwave Technol. 14(3), 868–878 (2008).

Rusch, L. A.

J. B. Rosas-Fernandez, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-Label recognition based on FWM,” J. Lightwave Technol. 14(3), 868–878 (2008).

Salehi, J. A.

A. Keshavarzian and J. A. Salehi, “Multiple-shift code acquisition of optical orthogonal codes in optical CDMA systems,” IEEE Trans. Commun. 53(4), 687–697 (2005).
[CrossRef]

A. Keshavarzian and J. A. Salehi, “Optical orthogonal code acquisition in fiber-optic CDMA systems via the simple serial-search method,” IEEE Trans. Commun. 50(3), 473–483 (2002).
[CrossRef]

S. Zahedi and J. A. Salehi, “Analytical comparison of various fiber-optic CDMA receiver structures,” J. Lightwave Technol. 18(12), 1718–1727 (2000).
[CrossRef]

J. A. Salehi, “Code division multiple-access techniques in optical fiber network–Part I: fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
[CrossRef]

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory 35(3), 595–604 (1989).
[CrossRef]

Sardesai, H. P.

H. P. Sardesai and A. M. Weiner, “Nonlinear fibre-optic receiver for ultrashort pulse code division multiple access communications,” Electron. Lett. 33(7), 610–611 (1997).
[CrossRef]

Teh, P. C.

Wada, N.

Wang, X.

Wang, Y.-H.

C.-C. Yang, J.-F. Huang, and Y.-H. Wang, “Multipulse-Per-Row codes for high-speed optical wavelength/time CDMA Networks,” IEEE Photon. Technol. Lett. 19(21), 1756–1758 (2007).
[CrossRef]

Wei, V. K.

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory 35(3), 595–604 (1989).
[CrossRef]

Weiner, A. M.

H. P. Sardesai and A. M. Weiner, “Nonlinear fibre-optic receiver for ultrashort pulse code division multiple access communications,” Electron. Lett. 33(7), 610–611 (1997).
[CrossRef]

Yang, C.-C.

C.-C. Yang, J.-F. Huang, and Y.-H. Wang, “Multipulse-Per-Row codes for high-speed optical wavelength/time CDMA Networks,” IEEE Photon. Technol. Lett. 19(21), 1756–1758 (2007).
[CrossRef]

Yang, G.-C.

C.-C. Hsu, G.-C. Yang, and W. C. Kwong, “Hard-Limiting performance analysis of 2-D optical codes under the chip-asynchronous assumption,” IEEE Trans. Commun. 56(5), 762–768 (2008).
[CrossRef]

G.-C. Yang and W. C. Kwong, “Performance analysis of extended carrier-hopping prime codes for optical CDMA,” IEEE Trans. Commun. 53(5), 876–881 (2005).
[CrossRef]

G.-C. Yang and T. E. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Trans. Inf. Theory 41(1), 96–106 (1995).
[CrossRef]

Zahedi, S.

Electron. Lett. (1)

H. P. Sardesai and A. M. Weiner, “Nonlinear fibre-optic receiver for ultrashort pulse code division multiple access communications,” Electron. Lett. 33(7), 610–611 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C.-C. Yang, J.-F. Huang, and Y.-H. Wang, “Multipulse-Per-Row codes for high-speed optical wavelength/time CDMA Networks,” IEEE Photon. Technol. Lett. 19(21), 1756–1758 (2007).
[CrossRef]

IEEE Trans. Commun. (6)

A. Keshavarzian and J. A. Salehi, “Optical orthogonal code acquisition in fiber-optic CDMA systems via the simple serial-search method,” IEEE Trans. Commun. 50(3), 473–483 (2002).
[CrossRef]

A. Keshavarzian and J. A. Salehi, “Multiple-shift code acquisition of optical orthogonal codes in optical CDMA systems,” IEEE Trans. Commun. 53(4), 687–697 (2005).
[CrossRef]

F. Benedetto and G. Giunta, “On efficient code acquisition of optical orthogonal codes in optical CDMA systems,” IEEE Trans. Commun. 58(2), 438–441 (2010).
[CrossRef]

J. A. Salehi, “Code division multiple-access techniques in optical fiber network–Part I: fundamental principles,” IEEE Trans. Commun. 37(8), 824–833 (1989).
[CrossRef]

G.-C. Yang and W. C. Kwong, “Performance analysis of extended carrier-hopping prime codes for optical CDMA,” IEEE Trans. Commun. 53(5), 876–881 (2005).
[CrossRef]

C.-C. Hsu, G.-C. Yang, and W. C. Kwong, “Hard-Limiting performance analysis of 2-D optical codes under the chip-asynchronous assumption,” IEEE Trans. Commun. 56(5), 762–768 (2008).
[CrossRef]

IEEE Trans. Inf. Theory (2)

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory 35(3), 595–604 (1989).
[CrossRef]

G.-C. Yang and T. E. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Trans. Inf. Theory 41(1), 96–106 (1995).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (2)

Opt. Lett. (1)

Other (1)

W. Leyang, Q. Kun, Z. Chongfu, Z. Heng, and X. Lu, “A new optical orthogonal code label and all optical recognition technology for optical packet switching,” presented at IEEE International Conference on Broadband Network & Multimedia Technology(IC-BNMT), Beijing, China, 26–28 Oct. 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Principle of the WC receiver with code acquisition.

Fig. 2
Fig. 2

Sketches of false Resulting-Pulses that may courses bit error: (a) real Resulting-Pulse produced by an autocorrelation peak; (b) false Resulting-Pulse that is narrower but higher than the real Resulting-Pulse; (c) two narrow false Resulting-Pulses; (d) false Resulting-Pulse that is both wider and higher than the real Resulting-Pulse.

Fig. 3
Fig. 3

Diagram of the proposed pulse-width monitoring scheme.

Fig. 4
Fig. 4

Experimental setup of the experimental demonstration.

Fig. 5
Fig. 5

Waveforms at the key spot of the experimental setup. (a) decoded signals, (b),(c) two Resulting–pulses; (d) overlapped Resulting-pulses for m = 3,4,5, respectively; (e) Overlapping-Pulses for m = 3,4,5, respectively, (f) FWM spectrum for Resulting-pulses, (g) FWM spectrum for Overlapping pulse.

Fig. 6
Fig. 6

Measured BER of the WC receiver with different values of m.

Fig. 7
Fig. 7

Bit-error-probability of WC receiver with differentα.

Fig. 8
Fig. 8

Bit-error-probability of WC receiver with different m.

Fig. 9
Fig. 9

Number of simultaneous users at certain bit-error probability for CHPCs.

Fig. 10
Fig. 10

Performance comparison of WCR with m = 10 and CR (Th = ω) with hard limiting. WCR: Wavelength-correlating receiver; CR: Conventional receiver.

Fig. 11
Fig. 11

Performance comparison of WCR with m = 10 and OHLCR with different threshold. WCR: Wavelength-correlating receiver; OHLCR: Conventional receiver with optical hard limiter.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

P e , a P e , s = Pr ( p = 1 , o r p = 2 , ... , o r p = L ) Pr ( p = L ) L
p h i t = t 0 t 0 + ( S P + 1 ) T c p T c d t 3 p
P h ( l ) = C K 1 l [ s + 2 d = l 3 s + d p 1 , 0 s α d p 1 , 1 d + i + j = l , j > 0 3 l p 1 , 0 i ( 1 α ) j p 1 , 1 j ] ( 1 p 1 , 0 p 1 , 1 ) K 1 l
κ ( κ 1 , κ 2 , ... , κ ω )
P E = 1 2 l = ω K 1 P h ( l ) P ( e r r o r | l ) = 1 2 l = ω K 1 P h ( l ) κ ϕ l 1 F l P ( e r r o r | κ )
P ( e r r o r | κ ) = i = 1 ω P e ( κ i )
i = 1 ω κ i = l , κ i κ , and κ i 0 , i = 1 , 2 , ... ω
F l = ω l
P e ( κ i = 1 ) = 1 3 m
P e ( κ i = j , j > 1 ) = 1 ( m + 1 3 m ) j m 1 3 m ( 3 m + 1 6 m ) j 1 ( 9 m 2 10 m + 1 36 m 2 ) ( 2 3 ) j 2
P e , s = Pr ( p = L )
P e , a = Pr ( p = 1 , o r p = 2 , ... , o r p = L )           = i = 1 L Pr ( p = i ) 0 i < j L L Pr ( p = i ) Pr ( p = j ) + 0 i < j < k L L Pr ( p = i ) Pr ( p = j ) Pr ( p = k )           + ... + ( 1 ) L 1 i = 1 L Pr ( p = i )
P e , s = Pr ( p = L ) = Pr ( p = i ) 1 , i = 1 , 2 , 3... , L
P e , a i = 1 L Pr ( p = i ) = L P e , s ( p = L )

Metrics